Abstract:
Methods and apparatus to control architectural opening covering assemblies are disclosed herein. An architectural covering assembly including an architectural covering; a tube to which the architectural covering is coupled; a manual controller operatively coupled to the tube to rotate the tube; a motor including a motor housing and a motor shaft; and a clutch assembly including a clutch and a clutch housing in which the clutch is disposed, the motor shaft coupled to the clutch and the clutch coupled to the manual controller to hold the motor shaft substantially stationary when the architectural covering is moved under an influence of the motor to cause the motor housing to rotate with the clutch housing and the tube.
Abstract:
Methods and apparatus to control architectural opening covering assemblies are disclosed herein. An architectural covering assembly including an architectural covering; a tube to which the architectural covering is coupled; a manual controller operatively coupled to the tube to rotate the tube; a motor including a motor housing and a motor shaft; and a clutch assembly including a clutch and a clutch housing in which the clutch is disposed, the motor shaft coupled to the clutch and the clutch coupled to the manual controller to hold the motor shaft substantially stationary when the architectural covering is moved under an influence of the motor to cause the motor housing to rotate with the clutch housing and the tube.
Abstract:
A stacking panel covering for an architectural opening includes a headrail and a plurality of suspended from the headrail. The panels form an overlapped stack at one end of the headrail when the stacking panel covering is opened, and cover the architectural opening when the stacking panel covering is closed. The panels are piggybacked on those adjacent thereto, so that they stack, one behind the next, when the stacking panel covering is opened, and so that each pulls the next adjacent thereto as the stacking panel covering is being closed. The panels themselves may be planar, or convexly curved in a horizontal direction and substantially straight in a vertical direction.
Abstract:
An architectural covering and a method of manufacturing the covering is provided. The panel may include multiple strips of material extending lengthwise across a width dimension of the panel. The strips of material may be overlapped and coupled to one another to define cells between adjacent strips of material. The panel may be retracted and extended across an architectural opening, and the strips of material may include a resilient support member to expand the cells as the panel is extended across the architectural opening. The panel may be manufactured by helically winding a continuous, elongate strip of material about a drum in an overlapped manner.
Abstract:
A method for manufacturing a window covering for an architectural opening is disclosed. The covering including a support, at least one vane, and at least one operating element. The method for manufacturing the covering includes extending the vane across the support; extending the operating element along a length of the support, and coupling the covering to a roller for selective rotative movement for extending and retracting the covering during use. The operating element being movable with respect to the support. In use, an upper portion of the vane is fixed with respect to the support while a lower portion of the vane is fixed with respect to the operating element so that the lower portion of the vane is movable relative to the upper portion by moving the at least one operating element.
Abstract:
The disclosure provides roll-up coverings for an architectural opening, and various embodiments of ladder tapes. Embodiments of the roll-up covering include a roller, a first outer elongate tape, a first inner elongate tape and a plurality of slats disposed between the outer and inner elongate tapes. The first inner elongate tape can further defines a plurality of collapsible hinge segments disposed along the length of the first inner elongate tape. The collapsible hinge segments can be configured to collapse in order to decrease the effective length of the first inner elongate tape when the first inner elongate tape is rolled up around the roller. The collapsible hinge segments can further be configured to expand in order to increase the effective length of the first inner elongate tape when the roll-up covering is unrolled from the roller.
Abstract:
A roller blind is disclosed which provides horizontal slats for directional shading, enabling the application of a screen fabric which allows a greater portion of visible light to pass therethrough. The disclosed slatted roller blind is free from the usage of ladder cords and is simplistic in design. The disclosed slatted roller blind maintains a compact formation of a roller shade when retracted and has greater resistance to skewing along the longitudinal axis of the roller while being retracted. Furthermore, the disclosed slatted roller blind design is capable of being utilized as an outdoor or indoor blind.
Abstract:
Apparatus and methods for controlling architectural opening coverings are described herein. An example apparatus includes a roller tube, a motor including a motor drive shaft and a motor casing, the motor casing to rotate with the roller tube, and a manual control including a manual control drive shaft coupled to the motor drive shaft, the motor to apply torque to the roller tube through rotation of the motor casing.
Abstract:
A covering for an architectural opening is provided. The covering may include a roller, a sheet attached to the roller, and at least two slats attached to the sheet. The at least two slats may extend lengthwise across a full width of the sheet. The at least two slats may be spaced vertically apart from one another to define a gap between adjacent slats of the at least two slats. Each slat of the at least two slats may have an arcuate profile. The at least two slats and the sheet may be rolled onto and unrolled from the roller. The at least two slats may be rigid or semi-rigid to provide stiffness to the support sheet.
Abstract:
Apparatus and methods for controlling architectural opening coverings are described herein. An example apparatus includes a roller tube, a motor including a motor drive shaft and a motor casing, the motor casing to rotate with the roller tube, and a manual control including a manual control drive shaft coupled to the motor drive shaft, the motor to apply torque to the roller tube through rotation of the motor casing.