摘要:
The MRI apparatus of the present invention executes a non-imaging mode 501 for obtaining a steady state of magnetization and an imaging mode 502 for measuring echoes for images. In the non-imaging mode 501 and the imaging mode 502, imaging is performed by using a GrE type pulse sequence. In the imaging, RF pulses are irradiated while flip angle of nuclear magnetization in the imaging mode 502 is changed in a range of values not larger than a certain value determined by flip angle of nuclear magnetization used in the non-imaging mode 502 is irradiated. This certain value is, for example, the maximum value of flip angle of nuclear magnetization used in the non-imaging mode, or flip angle provided by an RF pulse used at the end of the non-imaging mode. SAR observed with use of a GrE type pulse sequence can be thereby reduced without degrading image contrast, and thus influence on human bodies can be reduced.
摘要:
When a magnetic resonance signal is received more than once, while a table (transfer unit) is moved, a gradient magnetic field is applied in the table moving direction, and an application amount (intensity and application time) of the gradient magnetic field in the table moving direction is changed every acquisition of data. As for the encoding by the gradient magnetic field in the table moving direction, a series of phase encode is performed at different positions of an examination target, unlike a conventional phase encode. Therefore, the Fourier transform cannot be applied to the image reconstruction. Given this situation, a magnetization map of total FOV of the examination target is determined in such a manner that a sum of the square of an absolute value of a difference is minimized, the difference between a received signal and a signal calculated from the magnetization map set as a variable, and then, the reconstruction is performed. Even when a size of signal acquisition area in the table moving direction is narrow, the magnetic resonance imaging apparatus of the present invention is capable of taking an image of a wide field of view at high speed, by performing the imaging while the table is moved continuously.
摘要:
This invention provides a receiving coil that allows a high-quality image of high depth sensitivity to be obtained during vertical magnetic field MRI without limiting selection of a cross section to be imaged and of a phase-encoding axis. A subject's field of view is broadened without deterioration of the coil characteristics. Two orthogonal solenoid coils (3-1 and 4-1) and sub-coils (5-1, 6-1, and 7-1) whose sensitivity distributions each become an odd function in an x-direction, a y-direction, and a z-direction, respectively, with respect to the origin of the sensitivity distribution of each of the solenoid coils are used as multiple sub-coils to construct the receiving coil. This receiving coil is suitable for a high-speed imaging method in which an image is acquired using reduced phase encoding and the image is reconstructed using image folding. In addition, the subject's field of view can be broadened by arranging conductors of the coil appropriately.
摘要:
The MRI apparatus of the present invention executes a non-imaging mode 501 for obtaining a steady state of magnetization and an imaging mode 502 for measuring echoes for images. In the non-imaging mode 501 and the imaging mode 502, imaging is performed by using a GrE type pulse sequence. In the imaging, RF pulses are irradiated while flip angle of nuclear magnetization in the imaging mode 502 is changed in a range of values not larger than a certain value determined by flip angle of nuclear magnetization used in the non-imaging mode 502 is irradiated. This certain value is, for example, the maximum value of flip angle of nuclear magnetization used in the non-imaging mode, or flip angle provided by an RF pulse used at the end of the non-imaging mode. SAR observed with use of a GrE type pulse sequence can be thereby reduced without degrading image contrast, and thus influence on human bodies can be reduced.
摘要:
An NMR system that enables multiplex resonance measurement includes a superconductivity reception coil, a transmission coil, and four electric current loops. The NMR system also includes an additional coil in which directions of currents that flow in an inner loop and an outer loop are opposite to each other. The additional coil and the transmission coil are arranged such that a direction of a high frequency magnetic field that is developed in the center of the additional coil when electricity is fed to the additional coil is substantially identical with a direction of a high frequency magnetic field that is developed in the center of the transmission coil when electricity is fed to the transmission coil. The electric current loop of the transmission coil is arranged substantially in the middle of the inner loop and the outer loop of the additional coil in which directions of electric currents that flow in the inner loop and the outer loop are opposite to each other.
摘要:
An NMR probe having a high-sensitivity solenoid probe coil for receiving free induction decay (FID) signals in nuclear magnetic resonance (NMR) spectroscopy, and an NMR spectrometer which incorporates this probe. The solenoid probe coil is fabricated by a building block approach where it mainly consists of coil substrates having superconducting thin film coils made from superconducting thin film thereon, and side holding plates and a wiring substrate with line pattern of superconducting thin films which are both perpendicular to the coil substrates. The superconducting thin film coils are connected with the line patterns of superconducting thin films by capacitive coupling to make the solenoid coil configuration and solenoid probe coil of superconducting material.
摘要:
A configuration of an NMR apparatus is provided. In the NMR apparatus, a magnetic field space of higher uniformity is generated by split superconducting magnets. At the same time, it is provided with a cryo probe excellent in cooling capability and sensitivity between two superconducting solenoid coils constructed in very close proximity to each other. For this purpose, a probe coil provided between the two superconducting solenoid coils is so constructed that the following is implemented: a certain distance is ensured between a substrate with a coil formed thereon and another, and the substrates and spacer substrates for cooling are alternately laminated. The spacer substrates are cooled by a cold head of sapphire. When the probe coil is inserted in the same direction as a sample tube (direction perpendicular to the static magnetic field), the spacer substrates cannot be coupled directly by the cold head of sapphire. Therefore, they are cooled through a fixed substrate for thermal conduction of sapphire coupled with the cold head.
摘要:
A magnetic resonance imaging apparatus includes a magnetic field generation means for applying gradient magnetic fields and a radio-frequency magnetic field to a patient placed in a static magnetic field in a predetermined pulse sequence; a multiple RF receiving coil comprising at least three RF receiving coils for receiving the nuclear magnetic resonance signals generated from the patient; and an image reconstruction means for reconstructing an image by processing the received nuclear magnetic resonance signals, wherein the image reconstruction means includes a coil selection means for selecting a plurality of RF receiving coil groups that are preset by combining the plurality of RF receiving coils according to imaging conditions, a synthesization means for synthesizing the measured data received by the respective RF receiving coils of each of the plurality of selected RF receiving coil groups, and a calculation means for eliminating aliasing artifacts by executing a matrix calculation as to the synthesized data.
摘要:
A nuclear magnetic resonance imaging apparatus in which a synchronizing signal is generated from a periodic physiological signal generated by a subject to be inspected, and a radiofrequency burst pulse is applied to the subject to be inspected in synchronism with the synchronizing signal while a gradient magnetic field in one direction is being applied to the subject to be inspected to modulate nuclear magnetizations of the subject to be inspected in the one direction. The radiofrequency burst pulse includes plural sub-pulses which are formed at equidistant intervals on a time axis and which have amplitudes modulated by a sinc function.
摘要:
In an inspecting method based on nuclear magnetic resonance, a burst wave having a plurality of sub-pulses frequency-modulated with a high frequency is generated, the burst wave is amplitude-modulated with at least a function which repeats polarity inversion, the amplitude-modulated burst wave is irradiated, as an exciting high frequency pulse, to an object to be inspected, and gradient magnetic fields are generated in predetermined pulse sequence to measure a nuclear magnetic resonance signal.