-
71.
公开(公告)号:US09645210B2
公开(公告)日:2017-05-09
申请号:US14846042
申请日:2015-09-04
Applicant: Hyperfine Research, Inc.
Inventor: Christopher Thomas McNulty , Michael Stephen Poole , Gregory L. Charvat , Matthew Scot Rosen , Jonathan M. Rothberg
IPC: G01R33/38 , G01R33/36 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/56 , G01R33/34 , G01R33/422
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: A thermal management component adapted to cool, when present, at least one component of a magnetic resonance imaging (MRI) system is described. The thermal management component is adapted to reduce or eliminate eddy current production during operation of the MRI system. The thermal management component comprises at least one conduit configured to circulate coolant, and at least one thermally-conductive substrate coupled to the at least one conduit and configured to transfer heat from the at least one component to the coolant when circulated through the at least one conduit, wherein the at least one thermally-conductive substrate is configured to reduce or eliminate eddy current production.
-
公开(公告)号:US09625544B2
公开(公告)日:2017-04-18
申请号:US15091971
申请日:2016-04-06
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Todd Rearick , Jonathan M. Rothberg
IPC: G01V3/00 , G01R33/38 , G01R33/36 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/56 , G01R33/34 , G01R33/422
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: In some aspects, a magnetic system for use in a low-field MRI system. The magnetic system comprises at least one electromagnet configured to, when operated, generate a magnetic field to contribute to a B0 field for the low-field MRI system, and at least one permanent magnet to produce a magnetic field to contribute to the B0 field.
-
公开(公告)号:US20160169992A1
公开(公告)日:2016-06-16
申请号:US15049309
申请日:2016-02-22
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Matthew Scot Rosen , Gregory L. Charvat , William J. Mileski , Todd Rearick , Michael Stephen Poole
IPC: G01R33/44 , G01R33/3875 , G01R33/385
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
-
公开(公告)号:US20160069975A1
公开(公告)日:2016-03-10
申请号:US14846158
申请日:2015-09-04
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Jeremy Christopher Jordan , Michael Stephen Poole , Laura Sacolick , Todd Rearick , Gregory L. Charvat
IPC: G01R33/54 , G01R33/3875 , G01R33/36 , G01R33/385
Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
-
公开(公告)号:US20210244306A1
公开(公告)日:2021-08-12
申请号:US17223762
申请日:2021-04-06
Applicant: Hyperfine Research, Inc.
Inventor: Anne Michele Nelson , Christopher Thomas McNulty , Jeremy Christopher Jordan , Michael Stephen Poole
Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
-
公开(公告)号:US20210165060A1
公开(公告)日:2021-06-03
申请号:US17145962
申请日:2021-01-11
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/44 , A61B50/13 , A61B5/055 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US11006851B2
公开(公告)日:2021-05-18
申请号:US16554479
申请日:2019-08-28
Applicant: Hyperfine Research, Inc.
Inventor: Anne Michele Nelson , Christopher Thomas McNulty , Jeremy Christopher Jordan , Michael Stephen Poole
Abstract: According to some aspects, a magnetic resonance imaging system capable of imaging a patient is provided. The magnetic resonance imaging system comprising at least one B0 magnet to produce a magnetic field to contribute to a B0 magnetic field for the magnetic resonance imaging system and a member configured to engage with a releasable securing mechanism of a radio frequency coil apparatus, the member attached to the magnetic resonance imaging system at a location so that, when the member is engaged with the releasable securing mechanism of the radio frequency coil apparatus, the radio frequency coil apparatus is secured to the magnetic resonance imaging system substantially within an imaging region of the magnetic resonance imaging system.
-
公开(公告)号:US10921404B2
公开(公告)日:2021-02-16
申请号:US16840149
申请日:2020-04-03
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/385 , G01R33/383 , G01R33/44 , A61B50/13 , G01R33/389 , G01R33/421 , G01R33/56 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , G01R33/3873 , G01R33/36 , G01R33/422
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet, a plurality of gradient coils, and at least one radio frequency coil, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
-
公开(公告)号:US20200341085A1
公开(公告)日:2020-10-29
申请号:US16923892
申请日:2020-07-08
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/34 , G01R33/385 , G01R33/383 , G01R33/565 , G01R33/36 , G01R33/44
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
公开(公告)号:US10775454B2
公开(公告)日:2020-09-15
申请号:US16694233
申请日:2019-11-25
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/36 , G01R33/38 , G01R33/34 , G01R33/385 , G01R33/383 , G01R33/565 , G01R33/44 , G01R33/422 , G01R33/3873 , G01R33/381
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
-
-
-
-
-
-
-
-
-