Abstract:
The present invention is a system and method which controls outer loop transmit power for transmission power of an uplink/downlink communication in a wireless communication system. The system receives a communication from a base station and determines an error rate on the received communication. The system then distinguishes between static and dynamic channels, produces a static adjustment value, and characterizes the dynamic channels to generate a dynamic adjustment value. The target power level is then adjusted by the static and dynamic adjustment values, setting the transmission power level.
Abstract:
A time division duplex method for determining whether to initiate handover of a mobile unit from a serving base station to a target base station, the method comprises receiving the broadcast channel from the serving base station (BCHser); calculating the serving base station received signal code power (RSCPser); receiving the broadcast channel from the target base station (BCHtar); calculating the target base station received signal code power (RSCPtar); determining interference signal code power for the serving base station (ISCPser); determining interference signal code power for the target base station (ISCPtar); calculating RSCPser/ISCPser; calculating RSCPtar/ISCPtar; and determining whether RSCPser/ISCPser is less than RSCPtar/ISCPtar, and if so, commencing handover from the serving base station to the target base station.
Abstract:
Method and apparatus for interference signal code power noise variance estimation employing a reduced number of samples utilizing the equation 1 null ^ n 2 = T null null i = 1 N sample null null h n null ( i ) null 2 , where 2 T = G null null null ( r ) N sample , where NsamplenullLchestnullNp1nullKmax, where 3 null null ( r ) = [ 1 + ( 1 r - 1 ) null ln null ( 1 - r ) ] - 1 and where 4 r = N sample L chest . As an alternative, a recursive technique may be employed wherein the noise variance is estimated from the ignored coefficients of the estimated channel output and upgraded recursively as per the following: 5 null ^ n 2 = 1 KW null null j = 1 K null null i = 1 W null null h i ( j ) - h ^ i ( j ) null 2 , where nulli(j) are the channel estimates after the post processing and the noise variance estimates {circumflex over (null)}nnull12, and the initial values of nulli(j) are all zeros.
Abstract:
A transmitting station receives a transmit power command and a reference signal. The transmit power command indicates an increase or decrease in transmission power for the transmitting station. A received power level of the reference signal is measured and the measured reference signal received power level is compared to a transmit power level of the reference signal to produce a pathloss estimate of the reference signal. A size of a change in transmit power level is determined using the pathloss estimate. A transmission power level of the transmitting station is adjusted in response to the transmit power command in an amount of the determined change in size. A communication is transmitted at the adjusted transmission power level.
Abstract:
A TTD system implements dynamic link adaptation by adding or changing control information to notify the receiver which timeslots and codes are currently active and which timeslots should be avoided. The system synchronizes the transmitter and the receiver such that the receiver knows which timeslots and codes the transmitter has used to map the coded composite transport channel onto physical channels. The system attempts to avoid the timeslots which are experiencing transmission difficulties, while attempting to utilize the timeslots which are not experiencing transmission problems.
Abstract:
A code division multiple access base station receives K data signals over a shared spectrum. The base station receives and samples a combined signal having the K transmitted data signals. A combined channel response matrix is produced. A block column of a cross correlation matrix is determined using the combined channel response matrix. Each block entry of the block column is a K by K matrix. Each block entry of the block column is a K by K matrix. A fourier transform of a complex conjugate transpose of the combined channel response matrix multiplied to the combined signal samples is taken. An inverse of a fourier transform of each block entry is multiplied to a result of the fourier transform to produce a fourier transform of the data vector. An inverse fourier transform of the data vector fourier transform is taken to produce data of the K signals.
Abstract:
K data signals are transmitted over a shared spectrum in a code division multiple access communication system. A combined signal is received and sampled over the shared spectrum. The combined signal has the K transmitted data signals. A combined channel response matrix is produced using the codes and impulse responses of the K transmitted data signals. A block column of a combined channel correlation matrix is determined using the combined channel response matrix. Each block entry of the block column is a K by K matrix. At each frequency point k, a K by K matrix null(k) is determined by taking the fourier transform of the block entries of the block column. An inverse of null(k) is multiplied to a result of the fourier transform. Alternately, forward and backward substitution can be used to solve the system. An inverse fourier transform is used to recover the data from the K data signals.
Abstract:
A sequence of codes are provided for potential assignment to a user in a wireless hybrid time division multiple access (TDMA)/code division multiple access (CDMA) communication system. At least one timeslot is selected to support the communication. For each selected timeslot, at least one code is selected. If more than one code is selected, the selected codes are consecutive in the provided codes sequence. For at least one of the selected timeslots, an identifier of a first and last code of the selected consecutive codes is signaled. The user receives the signaled identifier and uses the selected consecutive codes, as identified, to support the communication.
Abstract:
A code division multiple access base station is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over the shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated. A cross correlation matrix is determined using the estimated channel response. The spread data vector is determined using order recursions by determining a first spread data estimate using an element from the cross correlation matrix and recursively determining further estimates using additional elements of the cross correlation matrix. Data of the data signals is estimated using the spread data vector.
Abstract:
A code division multiple access base station is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over the shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated. A column of a channel correlation matrix is determined using the estimated channel response. A spread data vector is determined using the determined column, the estimated channel response, the received combined signal and a fourier transform. Data of the data signals is estimated using the spread data vector.