Abstract:
A liquid crystal display device includes a first substrate, a first alignment film formed over the first substrate, a second substrate, a second alignment film formed over the second substrate, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, and a projecting portion formed over the second substrate. The first alignment film is a photo alignment film, and a thickness “d2” of the second alignment film over the projecting portion and a film thickness “d1” of a portion of the first alignment film facing the projecting portion satisfy formula (1) and (2): 0 nm
Abstract:
An IPS system liquid crystal display device is provided to prevent reliability for a seal portion from lowering, which is caused by the fact that an overcoat film at a portion where an alignment film is not present is deteriorated by ultraviolet light during optical alignment process. An alignment film 113 subjected to optical alignment is formed above each surface of a TFT substrate 100 and of a counter substrate 200, the alignment film 113 on the side of the TFT substrate 100 is not formed in the seal portion, and a sealant 150 is bonded to an inorganic insulating film 109. On the side of the counter substrate 200, the alignment film 113 is formed on an overcoat film 203 and the sealant 150 is bonded to the alignment film 113. Since the ultraviolet light is not radiated directly to the overcoat film 203 when optical alignment is performed on the alignment film 113, the overcoat film 203 can be prevented from deterioration and, accordingly, intrusion of moisture from the deteriorated portion of the overcoat film can be prevented.
Abstract:
The present invention prevents the shaving of an alignment film caused by a columnar spacer in a liquid crystal display device of an IPS method using photo-alignment. A plinth higher than a pixel electrode is formed at a part where a columnar spacer formed over a counter substrate touches a TFT substrate. When an alignment film of a double-layered structure is applied over the pixel electrode and the plinth, the thickness of the alignment film over the plinth reduces by a leveling effect. When photo-alignment is applied in the state, a photodegraded upper alignment film over the plinth disappears and a lower alignment film having a high mechanical strength remains. As a result, it is possible to prevent the shaving of the alignment film.
Abstract:
Disclosed is a manufacturing method of a liquid crystal display device which is a manufacturing method of a liquid crystal display device including a liquid crystal alignment film to which an alignment regulating force is imparted by a photo-alignment treatment, including: a film forming step of forming a film containing a polymer whose main chain is cleaved by irradiation with light; a photo-alignment step of imparting an alignment regulating force to the film formed in the film forming step by irradiation of the film with light in an atmosphere of a temperature lower than 100° C.; and a removing step of removing a low-molecular weight component generated by cleaving the main chain of the polymer through the light irradiation after the light irradiation. Also disclosed is a liquid crystal display device manufactured by the manufacturing method.
Abstract:
In a liquid crystal display device including: TFT substrate; color filter; counter electrode; interlayer insulation film; pixel electrode; alignment film; liquid crystal layer; counter substrate; and Si semiconductor layer. The color filter, counter electrode, interlayer insulation film, pixel electrode, and alignment film being formed on the side where the TFT substrate is provided, the counter substrate being disposed in facing relation to the TFT substrate with the liquid crystal layer put between the counter substrate and TFT substrate, the Si semiconductor layer is formed between the pixel electrode and interlayer insulation film. Even when light from a backlight is absorbed by the color filter and sufficient light cannot reach the alignment film, electric charges accumulated on the alignment film can escape to the pixel electrode in an early stage by the Si semiconductor layer formed under the alignment film, thereby capable of erasing the afterimage in an early stage.