摘要:
In one embodiment, information is exchanged between independent control planes of different layers in a multilayer network, such as, but not limited to, between a packet switching client-layer network and an optical server-layer network. This exchanged information includes signaling regarding a server-layer communications service, having server-layer characteristics, within the server-layer network for use in communicatively coupling at least two devices of the client-layer network. In one embodiment, the client-layer network specifies at least one of these server-layer characteristics that the server-layer communications service provided by the server-layer network must have. In one embodiment, the server-layer network signal to the client-layer network at least one of these server-layer characteristics of the existing server-layer communications service. In one embodiment, this signaling between the client-layer network and the server-layer network includes sending extended Resource Reservation Protocol (RSVP) messages.
摘要:
In one embodiment, a management device receives one or more fate-sharing reports locally generated by one or more corresponding reporting nodes in a shared-media communication network, the fate-sharing reports indicating a degree of localized fate-sharing between one or more pairs of nodes local to the corresponding reporting nodes. The management device may then determine, globally from aggregating the fate-sharing reports, one or more fate-sharing groups indicating sets of nodes having a global degree of fate-sharing within the communication network. As such, the management device may then advertise the fate-sharing groups within the communication network, wherein nodes of the communication network are configured to select a plurality of next-hops that minimizes fate-sharing between the plurality of next-hops.
摘要:
In one embodiment, a source device determines a source route from itself to a destination device in a computer network, and forwards a first packet on the source route with the source route included within the first packet. In addition, the source device generates a second packet with the source route included within the second packet, the second packet also including an indication to cause one or more of a plurality of transit devices to forward the second packet to a reachable 1-hop neighbor of a device in the source route two hops away from the respective transit device. The source device may then forward the second packet itself, as do one the one or more transit devices on a diverse path based on the source route, to a particular reachable 1-hop neighbor of a particular device in the source route two hops away from the source (or transit) device.
摘要:
In one embodiment, a routing node determines a risk-sharing metric between pairs of nodes in a shared-media communication network, and may then compute a plurality of routes that minimizes the risk-sharing metric between the routes, to correspondingly route traffic according to the computed plurality of routes. Additionally, in another embodiment, a particular node in the shared-media communication network may determine a risk-sharing metric between itself and each of one or more other nodes in the shared-media communication network. The particular node may then share the one or more determined risk-sharing metrics with one or more routing nodes in the shared-media communication network, accordingly.
摘要:
In one embodiment, a management device in a computer network determines when nodes of the computer network join any one of a plurality of field area routers (FARs), which requires a shared-media mesh security key for that joined FAR. The management device also maintains a database that indicates to which FAR each node in the computer network is currently joined, and to which FARs, if any, each node had previously joined, where the nodes are configured to maintain the mesh security key for one or more previously joined FARs in order to return to those previously joined FARs with the maintained mesh security key. Accordingly, in response to an updated mesh security key for a particular FAR of the plurality of FARs, the management node initiates distribution of the updated mesh security key to nodes having previously joined that particular FAR that are not currently joined to that particular FAR.
摘要:
In one embodiment, a local node in a communication network determines a set of its neighbor nodes, and determines a respective occurrence frequency at which each particular neighbor node is to be probed based on a rate of change in distance between the local node and the particular neighbor node. The local node may then probe each particular neighbor node according to the respective occurrence frequency to determine the rate of change in distance between the local node and each particular neighbor node, and one or more routing metrics for reaching each particular neighbor node. As such, the local node may select, based on the probing, a suitable preferred next-hop node of the set of neighbor nodes for a corresponding routing topology.
摘要:
In one embodiment, a distributed intelligence agent (DIA) in a computer network performs deep packet inspection on received packets to determine packet flows, and calculates per-flow service level agreement (SLA) metrics for the packets based on timestamp values placed in the packets by respective origin devices in the computer network. By comparing the SLA metrics to respective SLAs to determine whether the respective SLAs are met, then in response to a particular SLA not being met for a particular flow, the DIA may download determined quality of service (QoS) configuration parameters to one or more visited devices along n calculated paths from a corresponding origin device for the particular flow to the DIA. In addition, in one or more embodiments, the QoS configuration parameters may be adjusted or de-configured based on whether they were successful.
摘要:
In one embodiment, an energy-harvesting communication device of a communication network accumulates energy, e.g., electromagnetic energy. Upon detecting that the accumulated energy surpasses a sufficient threshold, the communication device may transmit a message into the communication network using the accumulated energy as an unreliable and unsynchronized broadcast transmission to any available receiver within the communication network.
摘要:
In one embodiment, a network device determines a path from itself to a source device in a computer network, where the source device utilizes the path in reverse to reach the network device. Based on determining a reliability of the path in reverse, the network device may dynamically adjust one or more keepalive parameters for keepalive messages sent on the path. Accordingly, the network device may then send keepalive messages on the path based on the dynamically adjusted keepalive parameters.
摘要:
In one embodiment, a network device may receive an indication of a particular future message time, and determines a path validation time that is prior to the particular future message time by an amount at least long enough to detect and report a route change of a path from the network device to a source of the particular future message, wherein the source utilizes the path in reverse to reach the network device for the particular future message. Accordingly, the network device sends, at the path validation time, a keepalive message on the path, where in response to a failure of the keepalive message on the path, the network device repairs the path to the source with a particular route change, and reports the particular route change to the source, e.g., such that in response, the source may transmit the particular future message on the changed path in reverse.