摘要:
In one embodiment, information is exchanged between independent control planes of different layers in a multilayer network, such as, but not limited to, between a packet switching client-layer network and an optical server-layer network. This exchanged information includes signaling regarding a server-layer communications service, having server-layer characteristics, within the server-layer network for use in communicatively coupling at least two devices of the client-layer network. In one embodiment, the client-layer network specifies at least one of these server-layer characteristics that the server-layer communications service provided by the server-layer network must have. In one embodiment, the server-layer network signal to the client-layer network at least one of these server-layer characteristics of the existing server-layer communications service. In one embodiment, this signaling between the client-layer network and the server-layer network includes sending extended Resource Reservation Protocol (RSVP) messages.
摘要:
In one embodiment, a replacement network communications path is determined using dedicated resources of an existing path. One or more network elements in a network determines a new communications path between a first network node and a second network node in the network while an existing communications path is currently configured in the network to carry traffic between the first and second network nodes. The existing communications path includes one or more exclusive physical resources dedicated to the existing communications path. The new communications path includes at least one of said exclusive physical resources dedicated to the existing communications path. One embodiment includes: subsequent to said determining the new communications path, removing the existing communications path from service, and then instantiating the new communications path, with the new communications path including said at least one of said exclusive physical resources.
摘要:
In one embodiment, a replacement network communications path is determined using dedicated resources of an existing path. One or more network elements in a network determines a new communications path between a first network node and a second network node in the network while an existing communications path is currently configured in the network to carry traffic between the first and second network nodes. The existing communications path includes one or more exclusive physical resources dedicated to the existing communications path. The new communications path includes at least one of said exclusive physical resources dedicated to the existing communications path. One embodiment includes: subsequent to said determining the new communications path, removing the existing communications path from service, and then instantiating the new communications path, with the new communications path including said at least one of said exclusive physical resources.
摘要:
In one embodiment, negotiation is performed between the client-layer (e.g., Layer-3 or Layer-2) network and the server-layer (e.g., optical) network to establish a path through the server-layer network with desired server-layer characteristics. This negotiation may include a first iteration of a client-layer request of one or more first server-layer characteristics followed by a negative server-layer response, and a subsequent iteration of a particular client-layer request of one or more particular server-layer characteristics followed by a positive server-layer response, with said particular server-layer characteristics including at least one relaxed server-layer characteristic of said first server-layer characteristics. One embodiment establishes, in response a client-layer request to the server-layer network responsive to the positive server-layer response, a server-layer path between said two client-layer devices that satisfies said particular server-layer characteristics, but does not satisfy said first server-layer characteristics.
摘要:
Methods and apparatus for unambiguously identifying merge points associated with backup label switched paths (LSPs) which substantially bypass border routers included along a primary LSP are disclosed. According to one aspect of the present invention, a method for finding a merge point between a primary LSP and a backup LSP which has a head-end and a tail-end in different regions includes obtaining identifying information, which identifies nodes on the path of the primary LSP, from a record route object associated with the primary LSP. The method also includes comparing a node address of the identifying information with a destination address of the backup LSP or a node address present in a node identifier (node-ID) subobject of the backup LSP to identify the merge point.
摘要:
A technique gracefully shuts down network resources, such as nodes, interfaces and protocols, in a data network in a manner that minimizes network disruption. The technique may be used with both connectionless and connection-oriented networking systems. A node gracefully shuts down a network resource associated with the node by i) notifying other nodes in the network that the resource is being gracefully shutdown, ii) waiting for a condition to occur, and iii) when the condition occurs, shutting down the resource. The condition may include the expiration of a predetermined amount of time and/or monitoring the resource to determine if the resource has reached a certain level of activity. In response to receiving a notification that a resource is being gracefully shutdown, a node takes action to reroute traffic around the resource. If no alternative route is available, the node may continue to route traffic to the resource until it is shut down.
摘要:
In one embodiment, network devices are configured to route traffic and signaling onto co-routed bypass tunnels. Co-routed bypass tunnels protect against node or link failures in a label switched paths. The co-routed bypass tunnels provide bidirectional protection. In one example, a node acting as the point of local repair (PLR) receives a resource reservation state message at a first node and extracts a tunnel sender address from the reservation state message. The PLR is configured to identify a bypass tunnel to a second node in the reverse direction of the label switched path and signal resource reservation messages over the bypass tunnel in the reverse direction. In another example, a PLR receives a resource reservation message with bypass tunnel identification and the PLR is configured to identify a bypass tunnel to a second node in the reverse direction.
摘要:
Compositions containing micronized tanaproget, or a pharmaceutically acceptable salt thereof, and ethinyl estradiol and methods of preparing the same are provided. Also provided are kits containing the compositions, methods of contraception and hormone replacement therapy including administering a composition containing micronized tanaproget and ethinyl estradiol.
摘要:
In a packet switching network, a distributed architecture provides efficient computation of routes in Quality of Service (QoS)-based routing scenarios. Using a client-server model, only designated route servers store and maintain a database containing the entire network topology, so that each network node is not required to store and maintain the network topology. Client nodes maintain a cache containing pre-computed routes so that they can often make routing decisions autonomously. A client contacts a designated route server only when the client cannot obtain from its local cache a route to a given destination that meets the performance requirements. A client cache may contain pre-computed routes with designated QoS profiles to all destinations or to a subset of destinations. Route servers may also contain caches, which may contain pre-computed routes to all destinations in the network with all QoS profiles, or may contain only a subset of such routes. Each client node may also be provided with intelligence to learn, maintain and adapt local information based on the statistical usage of the network. Client caches may learn statically, i.e, the cache contains routes based on a QoS profile provided by the network service provider, or they may learn dynamically, i.e., routes are modified based on ongoing network usage statistics. The goal is to minimize the need to contact the route server as much as possible. Protocols are defined to maintain synchronization between the route server and its clients distributed across the network. These protocols need to be observed to ensure that all nodes have the latest view of the network topology stored at the route server.
摘要:
A path protection method that includes: establishing a point to multi-point (P2MP) tree spanning from a head node to a plurality of tail nodes, the P2MP tree providing a label switched path (LSP) from the head node to a particular tail node; identifying a first and a second pluralities of source-to-leaf (S2L) sub-LSPs for the LSP included within the P2MP tree, each corresponding pair of S2L sub-LSP in the first and second pluralities are path diverse; setting a first flag in a RSVP path message to designate the second plurality of S2L sub-LSPs as protecting respective S2L sub-LSPs in the first plurality at a baseline level of protection; setting a second flag to designate a subset of S2L sub-LSPs in the second plurality as protecting respective S2L sub-LSPs in the first plurality at an elevated level of protection; and transmitting the RSVP path message.