Abstract:
A method for performing a docking service using Wi-Fi by a wireless dockee (WD), includes transmitting a probe request including a docking information element (IE) 1 for discovering to docking service to a wireless docking center (WDC); receiving a probe response including a docking IE 2 from the wireless docking center (WDC) which has received the probe request; and performing a docking connection with the wireless docking center (WDC) based on the received probe response, wherein the docking IE 1 includes at least one of a device name parameter indicating a name of a device, a device Identifier parameter for identifying a device, or a docking information request parameter indicating a command of a docking service discovery.
Abstract:
An image decoding method performed by a decoding apparatus according to the present document includes constituting a candidate list for deriving motion information of a sub-block unit for a current block, wherein the merge candidate list includes constructed candidates; deriving control point motion vectors (CPMVs) for control points (CPs) of the current block based on the merge candidate list; deriving prediction samples for the current block based on the CPMVs; and generating a reconstructed picture for the current block based on the derived prediction samples, wherein the constructed candidates are derived based on combination of at least two of a first neighboring block in a first group, a second neighboring block in a second group, a third neighboring block in a third group and a fourth neighboring block, and the first neighboring block, the second neighboring block and the third neighboring block and the fourth neighboring block constituting the combination have the same reference picture index.
Abstract:
A method by which a decoding device performs image decoding, according to the present invention, comprises the steps of: deriving an intra prediction mode of a current block; deriving neighboring samples including left neighboring samples and upper neighboring samples of the current block; deriving reference samples for prediction of a target sample among the neighboring samples on the basis of the position of the target sample of the current block and the prediction angle of the intra prediction mode; determining an interpolation filter for the target sample; and deriving the prediction sample of the target sample on the basis of the interpolation filter and the reference samples.
Abstract:
An image decoding method performed by a decoding device according to the present disclosure comprises the steps of: obtaining motion prediction information relating to a current block from a bitstream; generating an affine MVP candidate list for the current block; deriving CPMVPs for CPs of the current block on the basis of the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
Abstract:
An image decoding method performed by a decoding apparatus according to the present document includes constituting a candidate list for deriving motion information of a sub-block unit for a current block, wherein the merge candidate list includes constructed candidates; deriving control point motion vectors (CPMVs) for control points (CPs) of the current block based on the merge candidate list; deriving prediction samples for the current block based on the CPMVs; and generating a reconstructed picture for the current block based on the derived prediction samples, wherein the constructed candidates are derived based on combination of at least two of a first neighboring block in a first group, a second neighboring block in a second group, a third neighboring block in a third group and a fourth neighboring block, and the first neighboring block, the second neighboring block and the third neighboring block and the fourth neighboring block constituting the combination have the same reference picture index.
Abstract:
An image decoding method performed by means of a decoding device according to the present disclosure comprises the steps of: configuring an affine merge candidate list with respect to a current block; deriving CPMVs with respect to CPs of the current block on the basis of the affine merge candidate list; deriving prediction samples with respect to the current block on the basis of the CPMVs; and generating a reconstructed picture with respect to the current block on the basis of the derived prediction samples, wherein the maximum number of inherited affine candidates is two, a first inherited affine candidate is derived on the basis of a left block group of the current block, and a second inherited affine candidate is derived on the basis of an upper block group of the current block.
Abstract:
A method by which a decoding apparatus performs image decoding, according to the present document, comprises the steps of: obtaining motion prediction information about a current block from a bitstream; generating an affine MVP candidate list for the current block; deriving CPMVPs for CPs of the current block on the basis of the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
Abstract:
The present disclosure provides a method for decoding a video signal including a current block based on an affine motion prediction mode (affine mode, AF mode), the method including: checking whether the AF mode is applied to the current block, the AF mode representing a motion prediction mode using an affine motion model; checking whether an AF4 mode is used when the AF mode is applied to the current block, the AF4 mode representing a mode in which a motion vector is predicted using four parameters constituting the affine motion model; generating a motion vector predictor using the four parameters when the AF4 mode is used and generating a motion vector predictor using six parameters constituting the affine motion model when the AF4 mode is not used; and obtaining a motion vector of the current block based on the motion vector predictor.
Abstract:
Disclosed are a method for decoding a video signal and an apparatus therefor. Specifically, a method for decoding an image based on an inter-prediction mode may include: configuring a merge candidate list by using motion information of a spatial candidate and a temporal candidate adjacent to a current block; parsing a first syntax element indicating a particular candidate applied to inter-prediction of the current block among a predefined number of candidates in the merge candidate list; deriving a refined candidate by adding a motion vector offset to a motion vector of a candidate indicated by the first syntax element; and generating a prediction block of the current block by using the motion information of the refined candidate.
Abstract:
An image decoding method performed by a decoding apparatus according to the present document includes constituting a candidate list for deriving motion information of a sub-block unit for a current block, wherein the merge candidate list includes constructed candidates; deriving control point motion vectors (CPMVs) for control points (CPs) of the current block based on the merge candidate list; deriving prediction samples for the current block based on the CPMVs; and generating a reconstructed picture for the current block based on the derived prediction samples, wherein the constructed candidates are derived based on combination of at least two of a first neighboring block in a first group, a second neighboring block in a second group, a third neighboring block in a third group and a fourth neighboring block, and the first neighboring block, the second neighboring block and the third neighboring block and the fourth neighboring block constituting the combination have the same reference picture index.