摘要:
An invention to measure of objects of non-homogeneous ultrasonic impedance in the testing path is provided to detect the present of flaws in any part of the object. The invention utilized a reference signal to compare against the actual signal derived from ultrasonic testing of the object. Reference signals are determined based upon the known or calculated properties of the object's layers or previously obtained signals measured from the object.
摘要:
The invention relates to the use of carbon nanomaterials as a filtration material pervious to nitrogen dioxide and impervious to ozone. The invention also relates to the use of carbon nanomaterials having a specific surface, measured by the BET method, of 15 to 40 m2/g inclusive and a form factor, equal to the ratio (highest dimension/lowest dimension) of the nanomaterial, of 5 to 250 inclusive, as material for filtering a gas mixture containing nitrogen dioxide and ozone, being pervious to the nitrogen dioxide and impervious to the ozone. The invention can be used in the field of air pollution.
摘要:
The present invention provides a compact optical probe assembly that measures ultrasound in materials. The probe uses angle-terminated optical fiber to direct illumination laser light at the surface of a remote target. Ultrasonic displacements at the surface scatter the illumination laser light. Angle-terminated optical fibers collect phase modulated light and direct the phase modulated light to an optical processor to produce a signal representative of the ultrasonic surface displacements. The probe may also incorporate angle-terminated optical fibers to direct generation laser light to the surface of a remote target to generate ultrasonic surface displacements. Optional shared beam forming element(s) may optically act on the illumination laser and collected phase modulated light.