摘要:
An optical scanning device includes a light source having light emitting points for emitting light beams, a coupling optical element that couples the light beams, a deflecting unit that deflects and scans the light beams, and a scanning optical system that focus the light beams to form an image. The optical scanning device satisfies the following condition: F tan(θ/2)+A
摘要翻译:光学扫描装置包括具有用于发射光束的发光点的光源,耦合光束的耦合光学元件,偏转和扫描光束的偏转单元,以及聚焦光束以形成的扫描光学系统 一个图像。 光扫描装置满足以下条件:<?in-line-formula description =“In-line formula”end =“lead”?> F tan(θ/ 2)+ A 其中A是发光点和耦合光学元件的光轴之间的最大距离,θ是发散角(全宽半最大值) 的光束,F是耦合光学元件的焦距,D是耦合光学元件的有效半径。
摘要:
An optical scanning device includes a first optical element that converts a cross-section shape of a light beam from a semiconductor laser to a desired shape; a second optical element that guides the light beam output from the first optical element to an optical deflector that deflects the light beam; and a third optical element that gathers the light beam deflected by the optical deflector onto a surface to be scanned to form a light spot thereby optically scanning the surface. At least one of the first optical element, the second optical element, and the third optical element includes a resin-made lens, at least one of the resin-made lenses has a power diffracting surface, and a surface shape of at least one of power diffracting surfaces is formed so that a power of a diffracting portion and a power of a refractive portion are cancelled out.
摘要:
A scanning optical system condensing a beam deflected by an optical deflector so as to form a beam spot on a surface to be scanned, comprises two lenses. A lens on the side of optical deflector has a negative refracting power in sub-scanning direction. A lens on the side of surface to be scanned has a positive refracting power in the sub-scanning direction. At least one lens surface of the lens surfaces of the two lenses is such that a shape in a sub-scanning section thereof is a non-arc shape.
摘要:
A scanning optical system includes converges, with a single lens, a divergent luminous flux, which is deflected in a main scanning direction by an optical deflector, on a surface of a scan target. The lens has two surfaces in a biconvex shape in both the main scanning direction and a sub-scanning direction, and at least one of the surfaces is a toric surface in which a line that connects, on a cross section in the main scanning direction, centers of curvature in a cross section in the sub-scanning direction is nonlinear, and change of the curvature of the toric surface in the cross section in the sub-scanning direction along the main scanning direction is asymmetric with an optical axis of the lens. The surfaces are anamorphic surfaces.
摘要:
A multi-beam optical scanner, in which a lateral magnification &bgr; in a composite system of an optical system between the light source for a multi-beam and the scanned surface satisfies the condition: 2
摘要:
A light source emitting a light flux; a coupling optical system couples the light flux from the light source to a subsequent optical system by transforming it into a parallel light flux, an approximately convergent light flux or an approximately divergent light flux; a light deflector reflects the light flux from the coupling optical system with a deflection reflective surface, and deflects it; a scanning and imaging optical system condenses the deflected light flux from the light deflector onto a surface to be scanned as a beam spot; and a correcting optical system is provided for self correcting shift of focal position of the beam spot on the surface to be scanned occurring due to environmental change or the like. The correcting optical system comprises at least one pair of a resin-made lens having an anamorphic surface having a negative power in each of main scanning direction and sub-scanning direction and a glass-made lens having an anamorphic surface having a positive power at least in sub-scanning direction, and is disposed between the coupling optical system and deflection reflective surface.
摘要:
An optical scanning apparatus is constructed such that a light beam from a light source is formed into a linear image extending in a main scanning direction and is caused to be deflected at a constant velocity by virtue of a light deflecting system having a deflective reflecting surface which is located in a vicinity of an image formation position of the linear image. The deflected light beam is allowed to transmit through a scanning image formation lens so as to be converged into a beam spot on a surface to be scanned, thus causing the beam spot to scan the surface to be scanned at a constant speed. The scanning image formation lens is formed by more than two lens elements and has at least one special surface special surface in which a sub-scanning curvature changes in a main scanning direction according to a distance from an optical axis toward a periphery of the lens surface such that a line passing through centers of curvature in the sub scanning curvature is curved, and at least one of the special surfaces is formed so that the change of a sub-scanning curvature is non-symmetrical in the main scanning direction and the curvature has at least two or more than two extreme values.
摘要:
A multi-beam optical scanner, in which a lateral magnification .beta. in a composite system of an optical system between the light source for a multi-beam and the scanned surface satisfies the condition: 2
摘要:
An object detector includes a projector including a light source having a two-dimensionally arranged plurality of light emitter groups, each of the light emitter groups having a plurality of light emitters, a light receiver which receives light emitted from the projector, and reflected by an object, and a light source driver which lights on and lights off each of the light emitter groups of the light source.
摘要:
A microlens array includes N lenses ranging from a 1st lens to an Nth lens and a lens arrangement area. N is a positive integer. The lens arrangement area has the N lenses arranged in array. The lens arrangement area receives light emitted from a light source. An ith (i being 1st to Nth) lens satisfies a conditional expression below: −20°≤θ≤20° where θ denotes an angle formed by a main-axis orientation of double refraction and a reference orientation.