Abstract:
A scheduling apparatus and a scheduling method, wherein the amount of signaling for frequency resource allocation information can be reduced while maintaining system throughput performance. In a base station apparatus (100), a scheduling section (113) allocates frequency resources to frequency allocation target terminals based on set frequency allocation units, and a frequency allocation parameter setting section (112) adjusts the set frequency allocation units set in the scheduling section (113) based on cluster numbers. Due to this, in each cluster number, frequency resources can be allocated based on the most suitable frequency allocation units with respect to the signaling bit number. As a result, the amount of signaling for frequency resource allocation information can be reduced. Further, system throughput can be maintained by making the cluster number, which is a parameter having little effect on system throughput, a setting parameter for frequency allocation units.
Abstract:
Provided are a wireless communication apparatus and a reference signal generating method, wherein inter-cell interference is reduced inside and outside a CoMP set. A CoMP mode setting unit (101) sets whether the terminal (100) thereof is a CoMP terminal or a Non-CoMP terminal. When the terminal (100) is set as a Non-CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, from among all the ZC sequence numbers that can be used within the system. When the terminal (100) is set as a CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, by hopping the ZC sequence numbers to be used within the CoMP set. A ZC sequence generating unit (105) generates a ZC sequence to be used as an SRS, using the calculated ZC sequence number.
Abstract:
It is possible to provide a radio communication terminal device and a radio transmission method which can improve reception performance of a CQI and a reference signal. A phase table storage unit stores a phase table which correlates the amount of cyclic shift to complex coefficients {w1, w2} to be multiplied on the reference signal. A complex coefficient multiplication unit reads out a complex coefficient corresponding to the amount of cyclic shift indicated by resource allocation information, from the phase table storage unit and multiplies the read-out complex coefficient on the reference signal so as to change the phase relationship between the reference signals in a slot.
Abstract:
This transmission device can notify of a control value pertaining to transmission power without causing an increase in the amount of signaling. A control unit (103) controls transmission power based on a bit sequence notified from a reception device and the association between the bit sequence and a control value pertaining to transmission power; in the association, each bit sequence is respectively associated with a first control value candidate group and a second control value candidate group; when the device is not the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the first control value candidate group, and when the device is the subject of cooperative reception, the control unit (103) calculates a transmission power using a control value candidate associated with the notified bit sequence among the second control value candidate group.
Abstract:
A terminal includes circuitry and a transmitter. The circuitry, in operation, determines a first transmission power for a first uplink signal and a second transmission power for a second uplink signal by prioritizing allocation of a transmission power to the second transmission power for the second uplink signal, responsive to, in a first transmission time interval (TTI) where the first uplink signal is transmitted, the second uplink signal being transmitted in a second TTI that is shorter than the first TTI. The transmitter, in operation, transmits the first uplink signal with the determined first transmission power and transmits the second uplink signal with the determined second transmission power.
Abstract:
According to the present invention, a base station can dynamically change a repetition transmission method as appropriate. In a base station (100), a repetition control unit (103) determines a data repetition pattern for a terminal (200). A transmission unit (109) repeatedly transmits data (repetition transmission) on the basis of the repetition pattern. The data repetition pattern corresponds to control information to be reported to the terminal (200) by dynamic signaling.
Abstract:
The present invention provides a terminal that can carry out a random-access process appropriately. A terminal (100) is provided with: a wireless transmission unit (108) that transmits a data signal; and a control unit (101) that determines a second resource for use in transmitting the data signal on the basis of a first resource for use in transmitting a preamble signal.
Abstract:
The present invention provides a transmitter which can suitably perform a transmission power control in a PT-RS port. In this transmitter (100), a control unit (101) determines a transmission power for transmitting a reference signal (PT-RS) for phase tracking and a data signal within a range in which the maximum transmission power for each antenna port is not exceeded. In addition, a transmission unit (105) transmits the reference signal for phase tracking and the data signal at the transmission power determined by the control unit (101).
Abstract:
The present invention provides a transmitter which can suitably perform a transmission power control in a PT-RS port. In this transmitter (100), a control unit (101) determines a transmission power for transmitting a reference signal (PT-RS) for phase tracking and a data signal within a range in which the maximum transmission power for each antenna port is not exceeded. In addition, a transmission unit (105) transmits the reference signal for phase tracking and the data signal at the transmission power determined by the control unit (101).
Abstract:
Provided is a terminal capable of transmitting an uplink signal appropriately in an unlicensed band. In a terminal (100), a resource allocating unit (107) allocates uplink signals to each of a plurality of bands into which a prescribed frequency band has been divided. Each of the plurality of bands is a unit for determining whether a resource is being used by another device. A radio transmitting unit (109) transmits the uplink signals.