Abstract:
A video encoding method, a video encoding apparatus, a video decoding method, and a video decoding apparatus are provided. The video encoding method includes producing a fast transform matrix based on a transform matrix which is used for frequency transformation on a block which has a predetermined size; producing a transformed block by transforming the block having the predetermined size by using the fast transform matrix; and performing scaling with respect to the transformed block in order to correct a difference between the transform matrix used for the frequency transformation and the fast transform matrix.
Abstract:
An image processing apparatus is disclosed. The present image processing apparatus includes an input unit to which an image is input; and a processor which extracts visual characteristics by reducing an input image and obtains a high-definition image by reflecting extracted visual characteristics on the input image. The disclosure relates to an artificial intelligence (AI) system and application thereof that simulate functions such as cognition and decision-making of a human brain using a machine learning algorithm such as deep learning.
Abstract:
An image processing apparatus is provided. The image processing apparatus according to an exemplary embodiment includes a communicator configured to receive an image, and a processor configured to generate a first image obtained by performing image processing on the received image by using a parameter for image processing, generate a second image obtained by reducing the first image at a predetermined ratio, and extract respective visual features from the first image and the second image, wherein the processor is further configured to adjust the parameter to allow a difference between the visual feature of the first image and the visual feature of the second image to be within a predetermined range.
Abstract:
A method of encoding a video is provided, the method includes: determining a filtering boundary on which deblocking filtering is to be performed based on at least one data unit from among a plurality of coding units that are hierarchically configured according to depths indicating a number of times at least one maximum coding unit is spatially spilt, and a plurality of prediction units and a plurality of transformation units respectively for prediction and transformation of the plurality of coding units, determining filtering strength at the filtering boundary based on a prediction mode of a coding unit to which pixels adjacent to the filtering belong from among the plurality of coding units, and transformation coefficient values of the pixels adjacent to the filtering boundary, and performing deblocking filtering on the filtering boundary based on the determined filtering strength.
Abstract:
An apparatus for decoding a video by parsing asymmetric partition information indicating whether partition types include asymmetric partition types, from a bitstream of an encoded image, determining at least one coding unit included in a maximum coding unit by using split information parsed from the received bitstream, determining at least one prediction unit of a coding unit among the at least one coding unit, by using the asymmetric partition information and information about a partition type of the coding unit parsed from the received bitstream, and performing motion compensation using the prediction units for the coding unit.
Abstract:
A method of encoding a video includes: splitting a picture into a maximum coding unit; for the maximum coding unit, determining coding units having a tree structure including coding units of coded depths and determining encoding modes for the coding units of the coded depths by performing encoding based on coding units according to depths, the coding units according to depths obtained by hierarchically splitting the maximum coding unit as a depth deepens; and outputting information about a maximum coding unit size and, for the maximum coding unit, information indicating an order of split information and skip mode information which is selectively determined for the coding units according to depths, information about the encoding modes for the coding units of the coded depths including the split information and the skip mode information which are arranged according to the order, and encoded video data.
Abstract:
A method and apparatus for decoding video and a method and apparatus for encoding video are provided. The method for decoding video includes: receiving and parsing a bitstream of encoded video; extracting, from the bitstream, encoded image data of a current picture assigned to a maximum coding unit of the current picture, information regarding a coded depth of the maximum coding unit, information regarding an encoding mode, and coding unit pattern information indicating whether texture information of the maximum coding units has been encoded; and decoding the encoded image data for the maximum coding unit, based on the information regarding the coded depth of the maximum coding unit, the information regarding the encoding mode, and the coding unit pattern information.
Abstract:
A method of decoding an encoded video including determining at least one coding unit by using split information extracted from a bitstream,obtaining first pattern information indicating whether residual samples of a coding unit among the at least one coding unit are equal to 0, when the first pattern information indicates the residual samples are not equal to 0, extracting from the bitstream transformation index information indicating whether a transformation unit of a current level included in the coding unit from among the at least one coding unit is split, when the transformation index information indicates a split of the transformation unit of the current level, splitting the transformation unit of the current level into square transformation units of a lower level, and when the transformation index information indicates a non-split of the transformation unit of the current level, obtaining second pattern information for the transformation unit of the current level, wherein the second pattern information indicates whether the transformation unit of the current level contains one or more transform coefficients not equal to 0, wherein a height of each of the square transformation units of the lower level is half a height of the transformation unit of the current level.
Abstract:
A method of decoding an encoded video including determining at least one coding unit by using split information extracted from a bitstream, obtaining first pattern information indicating whether residual samples of a coding unit among the at least one coding unit are equal to 0, when the first pattern information indicates the residual samples are not equal to 0, extracting from the bitstream transformation index information indicating whether a transformation unit of a current level included in the coding unit from among the at least one coding unit is split, when the transformation index information indicates a split of the transformation unit of the current level, splitting the transformation unit of the current level into transformation units of a lower level, and when the transformation index information indicates a non-split of the transformation unit of the current level, obtaining second pattern information for the transformation unit of the current level, wherein the second pattern information indicates whether the transformation unit of the current level contains one or more transform coefficients not equal to 0, wherein the transformation unit of the current level is split into four transformation units of the lower level.
Abstract:
A video decoding apparatus including an extractor which extracts from a bitstream first pattern information indicating whether residual samples of a current coding unit are equal to 0, and when the first pattern information indicates the residual samples are not equal to 0, extracts from the bitstream transformation index information indicating whether a transformation unit of a current level included in the current coding unit is split, a decoder which splits the transformation unit of the current level into transformation units of a lower level when the transformation index information indicates a split of the transformation unit of the current level, wherein the extractor further extracts second pattern information for the transformation unit of the current level when the transformation index information indicates a non-split of the transformation unit of the current level, wherein the second pattern information indicates whether the transformation unit of the current level contains one or more transform coefficients not equal to 0.