摘要:
The present invention is directed toward a method for setting a driving voltage of a differential quadrature phase-shift modulator, this method making signal quality superior in response to an individual difference in extinction ratio due to variations in manufacture of a device. To this end, signal quality of differential quadrature phase-shift modulated light output from a differential quadrature phase-shift modulator is acquired. An average amplitude of a first or second driving voltage signal is adjusted according to the signal quality of the thus-acquired differential quadrature phase-shift modulated light.
摘要:
A multi-level modulation receiving device for adaptively compensating for chromatic dispersion and polarization mode dispersion with high precision. Each equalizing filter has at least one variable parameter as a weight therefor and equalizes the waveform of a corresponding channel signal in accordance with an averaged variable parameter value. A signal quality monitor monitors the signal quality of the filter output signal, and a variable parameter value calculator calculates a variable parameter value to be set as the variable parameter, in accordance with the signal quality. A variable parameter averaging unit averages the variable parameter values calculated for respective channels, to generate an averaged variable parameter value, and sends the averaged variable parameter value to the equalizing filters such that the same weight is set in the equalizing filters associated with the n channels.
摘要:
The present invention discloses a design method of wavelength dispersion compensation of a desired link that is extracted from an optical network, the link including two or more spans, and two or more nodes (N1, N4) that are equipped with an add/drop function, as shown in FIG. 2. All residual dispersion ranges of paths that reach corresponding nodes are adjusted to fall within predetermined tolerable residual dispersion ranges that are set up for all the paths of the link by adjusting wavelength dispersion compensators provided to each of the spans.
摘要:
A superimposed signal detection circuit detects a signal superimposed on an optical signal in a WDM system. The superimposed signal detection circuit includes: an optical filter having wavelength-dependent loss to filter a plurality of optical signals on which a corresponding superimposed signal is superimposed by frequency modulation; a photo detector to convert the plurality of optical signals filtered by the optical filter into an electric signal; and a detector to obtain information indicated by the superimposed signal respectively superimposed on the plurality of optical signals from the electric signal obtained by the photo detector.
摘要:
In order to reduce the size and simplify the structure of a coherent light receiver, the coherent light receiver includes an optical mixer for coupling local oscillator light and reception signal light, a photoelectric converter for photoelectrically converting light coupled in the optical mixer, a reception data processing unit for extracting reception data included in the reception signal light through digital signal processing for processing the coupled signal converted into an electrical signal by the photoelectric converter, based on a first clock, and a modulator for modulating the local oscillator light or the reception signal light inputted to the optical mixer respectively, by using a clock phase-synchronized with the first clock used for the digital signal processing in the reception data processing unit.
摘要:
The present invention provides a frequency offset monitoring device and an optical coherent receiver. A low speed frequency offset monitoring device comprises a signal speed lowering section, for lowering the speed of an inputted signal and outputting the speed lowered signal, and a frequency offset monitor, for monitoring frequency offset of the speed lowered signal outputted by the signal speed lowering section.
摘要:
An optical receiver includes a splitter that splits a local oscillator lightwave into a first local oscillator lightwave and a second local oscillator lightwave; a measurement unit that measures phase variation of the first local oscillator lightwave; a receiving unit that receives a signal lightwave and the second local oscillator lightwave and mixes these lightwaves and converts the mixed lightwaves into digital signal; a dispersion compensator that reduces chromatic dispersion of the digital signal; a phase processing unit that rotates phase of the dispersion-reduced signal based on the phase variation; and a discriminating unit that discriminates the phase-rotated signal.
摘要:
A method for receiving an optical signal is included where an ingress signal is split into a first portion and a second portion. A relative delay is induced between the first portion and the second portion, which are optically interfered to generate at least one interfered signal. Quality criteria of a monitored signal at least based on the at least one interfered signal is monitored so that a relative delay based in the quality criteria may be adjusted.
摘要:
According to an aspect of an embodiment, an optical modulation device includes a Mach-Zehnder modulator and a controller. The Mach-Zehnder modulator is supplied a drive signal and a bias voltage. The Mach-Zehnder modulator modulates inputted light on the bases of the drive signal and the bias voltage. The drive signal selectively is superimposes a predetermined frequency signal. The bias voltage selectively is superimposes the predetermined frequency signal. The controller selects a superimposing target which is the drive signal or the bias voltage so as to change modulation formats.
摘要:
An interferometer comprises a delay element and a phase shift element. The delay element delays an optical DQPSK signal by one-symbol time. The phase shift element shifts the optical DQPSK signal by π/8. A pair of photodiodes converts each of a pair of optical signals output from the interferometer into an electric signal. A photodetector circuit converts differential current obtained by a pair of the photodiodes into voltage and outputs as a detection signal. A first decision circuit outputs one-bit information based on the voltage of the detection signal. A second decision circuit outputs one-bit information based on a squared value of the voltage of the detection signal.