摘要:
A Wireless mobile communication (WMC) device may maintain user preference information, which is unique to the WMC device capabilities and the device user. The WMC device may modify and/or update the user preference information based on device use and information ascertained from applications running on the WMC device itself; for example scheduling applications. The user preference information may be utilized to create context data tags for generated data on the WMC device. Context data tags may comprise such information as time/date stamping, subject information, and/or location information. The context data tags may be utilized to tag the generated data, enabling continuous and improved cataloging. Improved cataloging may enable improved searchability of tagged data. Tagged data alternatively and/or additionally may be transferred and stored in a remote device for improved and secure back-up storage. The remote device may utilize context data tags for cataloging and storing received data.
摘要:
Dynamically splitting jobs in wireless system between agnostic processor may comprise evaluating a job that a wireless mobile communication device may be requested to perform. The wireless mobile communication (WMC) device may evaluate a requested job to determine if one or more tasks may be sent to a remote device. The WMC device may consider such factors as information pertaining to the WMC device itself, information relating to the connection between the devices, and/or information pertaining to the remote device. This information may comprise such data as power availability in the wireless mobile communication device, processing load in the WMC device, processing and/or storage capabilities of the remote device, and characteristics of the connectivity between the two devices.
摘要:
A wireless mobile communication (WMC) device may be determine a quality of service (QOS) required to communicate data. The WMC device may utilize a plurality of physical layers available in the WMC device to retain the QOS throughout the data communication. The physical layers may comprise a plurality of wireless technologies and/or a plurality of transmission power levels within each wireless technology. Selection of physical layers that may be utilized may comprise determination of available QOS through the physical layers, available power in the WMC device, and/or power requirement for communicating data via the physical layers. Data encoding may also be utilized to alter size of communicated data while retaining the required QOS. Data encoding may comprise utilizing encoding schemes, data compression, and/or redundancy bits. A set of deadlines may be utilized to enable switching between available physical layers to ensure maintaining and/or achieving required QOS.
摘要:
Dynamically splitting jobs in wireless system between agnostic processor may comprise evaluating a job that a wireless mobile communication device may be requested to perform. The wireless mobile communication (WMC) device may evaluate a requested job to determine if one or more tasks may be sent to a remote device. The WMC device may consider such factors as information pertaining to the WMC device itself, information relating to the connection between the devices, and/or information pertaining to the remote device. This information may comprise such data as power availability in the wireless mobile communication device, processing load in the WMC device, processing and/or storage capabilities of the remote device, and characteristics of the connectivity between the two devices.
摘要:
An ad hoc network may be established between a handheld wireless communication device (HWCD) and one or more network resources utilizing biometric identity information. The biometric identity information may be associated with a user of the HWCD and utilized to select one or more network resources thus enabling secure communication between the HWCD and the one or more network resources. The HWCD may acquire the user's biometric identity information from the user and validate it utilizing stored biometric identity information. The one or more network resources may acquire the HWCD user's biometric identity information from the user and sign the biometric identity information with a private key. The HWCD may receive signed biometric identity information and associated public keys from each of the one or more network resources and validate the signed biometric identity information.
摘要:
Wireless mobile communication (WMC) devices located in operating proximity of each other may be enabled to form a mesh (ad hoc wireless) network. WMC devices in a mesh network may form a queuing system wherein each WMC device may store data forwarded to and/or from other WMC devices in the mesh network. Each WMC device in the mesh network may have different queuing capability based on a plurality of factors that may comprise internal factors such as processing, storage, power, and/or connectivity. The mesh network may comprise an internal addressing scheme that may enable utilization of the queuing system whether or not WMC devices in the mesh network are communicatively coupled to external networks.
摘要:
An ad hoc network enabled to handle secure data may be created for a specified user via a handheld wireless communication device (HWCD) such that rightful access to protected data stored on one or more networked devices may be extended to one or more distributed rendering devices. The HWCD and/or the user may be authenticated. The HWCD may enable configuration of one or more dynamic connections on the ad hoc network as needed until communication of data is complete. Bandwidth and throughput of one or more communication links may be adjusted according to bandwidth availability. The data may be buffered via the HWCD and/or one or more of the distributed rendering devices. Processing data tasks may be assigned to one or more networked resources on the ad hoc network. The data may undergo format conversion and be consumed on the one or more distributed rendering devices and/or the HWCD.
摘要:
Methods and systems for a persistent request generated by a wireless device, executed remotely and output to configurable local resources are disclosed and may include generating via a handheld wireless communication device (HWCD) a persistent request for a user that may be communicated to remote devices for execution and storage of results. The stored results may be received from local resources local which may be configured by the remote devices based on user preferences to deliver the stored results to the user. The stored results may be received by the user via the HWCD or another wireless communication device, and the identity of the user may be authenticated prior to receiving the stored results. The remote devices may discover the local resources based on the detection of the user logging into the network. User preferences may be stored in networked devices or may be stored in the HWCD.
摘要:
Methods and systems for an atomizing function for a mobile device are disclosed and may include discovering available resources via a handheld wireless communication device (HWCD) and assessing respective cost functions for processing tasks by the HWCD and/or the discovered resources. The tasks may be apportioned for local and/or remote execution by the HWCD and/or the discovered resources based on the assessed cost functions. The assessed cost functions may be dependent on factors comprising communication bandwidth, memory space, CPU processing power, and battery power, which may be weighted. The cost functions may be dynamically assessed, enabling dynamic reapportioning of the tasks, which may be apportioned based on latency, quality of service (QoS), priority and/or user preferences associated with the local and/or remote execution. The apportioning of the processing of the tasks may be based on the assessed cost functions, and a priority and/or a QoS associated with the task.
摘要:
A wireless mobile communication (WMC) device may discover available networks, and available local and/or remote resources. The WMC device may configure routes utilizing one or more of discovered resources and one or more available networks. The routes may be utilized to performed operations requested via the WMC device. A standardized language and/or protocol may be utilized in discovering and/or communicating with available resources and/or networks. The standardized language and/or protocol may enable commonality among the discovered networks and/or resources, and encryption of data communicated through the established routes. The standardized language and/or protocol may be updated and/or modified to incorporate new resources either by direct interactions between said new resources and the WMC device, or via existing available resources and/or networks. The discovery of resources and/or establishment of routes may be user-triggered, or it may be based on user preference information.