Abstract:
A direct current voltage boosting/bucking device includes a direct current voltage boosting circuit and a low drop-out (LDO) linear voltage converting circuit. The direct current voltage boosting circuit boosts an input voltage so as to generate an output voltage higher than the input voltage. The LDO linear voltage converting circuit converts the output voltage into a load voltage that is to be provided to a load, and controls the direct current voltage boosting circuit in accordance with a feedback signal from the load such that the output voltage and the load voltage have a minimum drop-out voltage differential therebetween and such that current flow through the load is maintained at a determined level.
Abstract:
In a method for a DC-DC power conversion performed by a switching mode buck voltage converter, the power conversion is split into two or more stages, and a feed-forward signal is generated by one of the stages and sent to another stage prior thereto. The feed-forward signal is generated by responding to a load current transient, such as output voltage drop, ON-duty increment or decrement occurred in the PWM control loop, error amp output swinging, and any other detectable signals in response to load current transient of the voltage converter. As a result, the performance of the DC-DC voltage converter is improved due to the prior stage modulated early in time, and both lower ripple current and peak current in steady state operations and fast response to load current transient conditions could be simultaneously obtained.
Abstract:
A switching circuit uses multiple common-drain JFETs to serve as the low-side switches of the switching circuit, and each of the low-side JFET is coupled between a high-side switch and a power node. Since a JFET can endure high voltage at both drain side and source side, and has good heat dissipation capability at drain side, the drain of the low-side JFET is coupled to the power node to enhance the heat dissipation capability and accordingly, all the low-side JFETs are allowed to be packaged in a same package to reduce the PCB layout area.
Abstract:
A pulse width modulator includes an amplifier module, a comparator module, and a filter module. The amplifier module receives a feedback voltage signal from a passive network, and generates first and second non-inverted voltage signals and first and second inverted voltage signals in response to the feedback voltage signal. The comparator module receives the first and second non-inverted voltage signals and the first and second inverted voltage signals, and provides first and second differential voltage signals corresponding to the first and second non-inverted voltage signals and the first and second inverted voltage signals. The filter module is coupled between the amplifier module and the comparator module, and is operable so as to attenuate high frequency components of the first and second non-inverted voltage signals. As such, the presence of noise in the feedback voltage signal does not affect differential operation of the comparator module.
Abstract:
To turn on a JFET, a two-stage turn-on current control is employed in a JFET driver circuit and a JFET driving method, by which a shortly pulsed high sourcing current is provided to turn on the JFET rapidly and efficiently, and a continuous low sourcing current is provided after the JFET turns on for reducing the power dissipation. After the JFET turns off, a negative charge pump is also employed to promise the JFET at a turn-off state. A special power sequence is further employed to ensure the JFET could be turned off during the power supply coupled to the JFET starts up.
Abstract:
A two-step DC-to-DC converter comprises a first converter stage for converting a first voltage to a second voltage, and a second converter stage for converting the second voltage to an output voltage. The first converter stage uses a MOSFET or normally-off JFET to serve as a high-side switch, and the second converter stage comprises a multi-phase modulator using a normally-on JFET to serve as a high-side switch, thereby improving the efficiency of the two-step DC-to-DC converter.
Abstract:
In a time-sharing current sense circuit for a multi-phase converter, a common transconductive amplifier is selectively connected to the channels of the converter power stage by a plurality of first switches under the control of a set of control clocks to detect the channel current of a selected channel among the channels so as to generate a sense current, and a sense current generated by the common transconductive amplifier from the sensed channel current is switched by a plurality of second switches under the control of the same control clocks to connect to one of a plurality of sampling-and-holding circuits each corresponding to one of the channels to generate a current sense signal to modulate the channel current of the selected channel.
Abstract:
In a time-sharing current sense circuit for a multi-phase converter, a common transconductive amplifier is selectively connected to the channels of the converter power stage by a plurality of first switches under the control of a set of control clocks to detect the channel current of a selected channel among the channels so as to generate a sense current, and a sense current generated by the common transconductive amplifier from the sensed channel current is switched by a plurality of second switches under the control of the same control clocks to connect to one of a plurality of sampling-and-holding circuits each corresponding to one of the channels to generate a current sense signal to modulate the channel current of the selected channel.
Abstract:
A current sense apparatus and method comprises a common drain DMOSFET and a MOSFET connected in series between a high voltage and a low voltage to serve as an output stage. The DMOSFET produces a phase output current, a mirror current mirrored from the phase output current, and a sense voltage. A servo amplifier is connected with the mirror current and sense voltage to produce a current sense signal. Due to the mirror current from the DMOSFET proportional to the phase output current, the current sense apparatus senses the phase output current in a temperature independent manner.
Abstract:
A voltage reference circuit includes a current source unit, a voltage-difference creating unit, and a resistance ratio unit. The current source unit receives an input current source and produces two current sources in equal current. The voltage-difference creating unit includes a first MOS device and a second MOS device to respectively receive the two current sources, wherein the first MOS device and a second MOS device has a threshold voltage difference. The resistance ratio unit includes a first resistor and a second resistor coupled in cascade, wherein the threshold voltage difference is applied to the first resistor. By adjusting a ratio of the first resistor to the second resistor, the resistance ratio unit produces a voltage reference, which is also fed back to the current source unit to ensure that the first current source and the second current source are equal.