Abstract:
A method for managing scanning of a plurality of channels in a wireless network is disclosed. The method comprises detecting by a station that a first channel in a plurality of channels is being used for a communication by another station, determining a duration of the communication based upon the communication information, setting a Network Allocation Vector for the station based on the determined duration, scanning a number of channels during the determined duration, and returning to the first channel upon at least one of a) completion of the step of scanning and b) an end of the determined duration.
Abstract:
A method for accessing a wireless local area network (WLAN) channel and providing quality of service (QoS) for voice in a system supporting both voice and data services. Under the method, a communication device (302, 303) contends for a medium (channel). Upon identifying a transmit opportunity, the device transmits a voice packet to an access point (AP) (304) and polls the AP for downlink traffic. A low power implementation is feasible because the communication device can sleep, wake up to contend for the medium, transmit a voice packet to the AP, request a voice packet from the AP, transmit an acknowledgement, and go back to sleep.
Abstract:
An access point (11) for a wireless local area network (10) transmits a beacon message during a service interval period (21). This beacon message identifies, in a preferred embodiment, those subscriber units to whom the access point will shortly be transmitting data. Subscriber units that are not identified in the beacon message and that do not have data themselves to transmit to the access point can implement a power conservation mode of operation until the next beacon message. Subscriber units that have data, such as voice information, to transmit can utilize the beacon message contents to at least estimate a likely time by when the access point will have concluded making its transmissions to the subscriber units. That estimated time can then be used to facilitate scheduling a time at which a given subscriber unit will contend for an opportunity to transmit its data to the access point. In a preferred embodiment, this scheduled transmission time can potentially occur either during a contention window that follows the service interval period or during a dynamic contention window that follows the transmissions of the access point and concludes with the conclusion of the service interval period. Subscriber units can then use intervening periods of time to effect their power conservation schemes of choice.
Abstract:
An optoelectronic module includes a laser, a ball lens, a substrate, a reflector, and a focusing lens. The laser is operable to generates a diverging light beam along an optical axis. The ball lens has a center. The substrate has a surface supporting the laser and an alignment structure. The alignment structure registers the ball lens in a plane parallel to the substrate surface and in a direction normal to the substrate surface so that the center of the ball lens is substantially aligned with the optical axis and the ball lens parallelizes the diverging light beam into a collimated beam. The reflector deflects the collimated beam to produce a deflected collimated beam in a plane intersecting the substrate surface. The focusing lens focuses the deflected collimated beam.
Abstract:
A wireless local area network (WLAN) includes an access point (102) and a mobile station (106). The mobile station can operate in a low power mode by shutting down a WLAN subsystem (204) of the mobile station. While the mobile station is in a low power mode, the access point buffers data received at the access point destined for the mobile station (706). The mobile station wakes up to initiate a service period by transmitting a trigger frame to the access point, and identifies a traffic stream to be serviced in the presently initiated service period. The access point begins transmitting response frames to the mobile station, identifying the traffic stream requested by the mobile station, and in at least one response frame, the access point may indicate the buffer status of another traffic stream associated with the mobile station to allow the mobile station to make decisions regarding data retrieval and power save state.
Abstract:
A rapid diagnostic test system or process uses a single-use module that includes a photodetector. The photodetector generates an electrical signal representing a measurement of light from a test region on a medium such as a lateral-flow strip for a binding assay. For light measurement, the test medium can contain a labeling substance that attaches a persistent fluorescent structure such as a quantum dot to a target analyte, so that the photodetector measures fluorescent light. Multiple photodetectors and an optical system that separates or filters light of wavelengths corresponding to different fluorescent labeling substances allow simultaneous testing for multiple analytes. The single-use module can include a display or LED for visual indication of test results, or the electrical signal can be output for processing in a reusable module.
Abstract:
A mobile station (106) establishes a real time communication link via an access point (102) for carrying voice or other time-sensitive data. A WLAN subsystem (204) of the mobile station is normally kept in a low power state. Upon initiating a communication link the mobile station signals to the access point that unscheduled power save delivery mode will be used (614), and the access point reserves resources to assure the necessary quality of service. The mobile station initiates a frame transaction by first powering up the WLAN subsystem (712), acquiring the WLAN channel (407), and transmitting a polling frame. Upon successful receipt of the polling frame the access point prepares to reply with an aggregate response. The aggregate response commences by transmitting all data in an aggregate buffer, including both reserved and unreserved data buffers. Upon successful receipt of the aggregate response, the mobile station places the WLAN subsystem back into a low power state.
Abstract:
A mobile station (106) establishes a real time communication link via an access point (102) for carrying voice or other time-sensitive data. A WLAN subsystem (204) of the mobile station is normally kept in a low power state. Upon initiating a communication link the mobile station signals to the access point that unscheduled power save delivery mode will be used (614), and the access point reserves resources to assure the necessary quality of service. The mobile station initiates a frame transaction by first powering up the WLAN subsystem (712), acquiring the WLAN channel (407), and transmitting a polling frame. Upon successful receipt of the polling frame the access point prepares to reply with an aggregate response. The aggregate response commences by transmitting all data in an aggregate buffer, including both reserved and unreserved data buffers. Upon successful receipt of the aggregate response, the mobile station places the WLAN subsystem back into a low power state.
Abstract:
A mobile station establishes a schedule by which data is exchanged with an access point. The schedule allows the mobile station to use a low power mode at times outside of the scheduled service periods. However, the mobile station may occasionally need to retrieve additional data from the access point, or transmit additional data to the access point, and so initiates an unscheduled service period to do so.
Abstract:
A low-profile optical communications module is provided that has two generally flat optical connector modules that slidingly engage one another to allow optical signals to be coupled between the optical connector modules. Because of the generally flat shapes of the optical connector modules and the manner in which they slidingly engage on another, the optical communications module has a very low profile that makes it well suited for use in thin devices, such as laptop and notebook computers and other electronics devices.