Abstract:
A magneto-optical disc system includes a magneto-optical disc with a light transmitting protective layer, an objective lens for bundling or focusing a laser beam onto a magnetic recording layer of the magneto-optical disc in order to perform recording and/or reproduction, and a magnetic field generating unit formed as a coil pattern on a transparent optical glass layer. In the magneto-optical disc system, the thickness t2 of the light-transmitting protective layer is set to fall within the range of 0.6 to 1.0 0.1 mm and the numerical aperture of the objective lens is set to fall within the range of 0.55 to 0.70, so as to obtain high density recording and/or reproduction by permitting the lens to be quite close to the actual recording layer.
Abstract:
Disclosed is a magneto-optical disc system comprising a magneto-optical disc 40 with a light-transmitting cover 41, an objective lens 2 for bundling or focusing a laser beam on a magnetic recording layer 43 of the magneto-optical disc 40 in order to perform recording and/or reproduction, and a magnetic field generating unit 9 obtained by forming a coil pattern 7 in an optical glass 8. In the above system, the thickness t2 of the light-transmitting cover 41 is set to fall within the range of 0.6 to 0.1 mm, and the numerical aperture (NA) of the objective lens 2 is set to fall within the range of 0.55 to 0.70, so as to obtain high-density recording and/or reproduction.
Abstract:
An magneto-optical disc system includes an magneto-optical disc with a light-transmitting cover and an objective lens for bundling or focusing a laser beam on a recording layer of the magneto-optical disc in order to perform recording and/or reproduction. The thickness t.sub.2 of the light-transmitting cover is set to fall within the range of 0.6 to 0.1 mm, the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 0.70 and the wavelength of the light beam is selected to be between 635 and 680 nanometers.
Abstract:
An optical disc system uses a rewritable optical disc with a light-transmitting cover and an objective lens for bundling or focusing a light beam on a recording layer of the optical disc in order to perform recording and/or reproducing of information. The recording layer is formed of a phase-change material. The thickness of the light-transmitting cover falls within the range of 0.05 mm to 0.6 mm, the numerical aperture (NA) of the objective lens is set to fall within the range of 0.55 to 1.10, and the wavelength of the light beam is selected to be between 100 nm to 780 nm.
Abstract:
A magnetooptical recording apparatus is disclosed which is capable of performing real-time overwrite operation. The apparatus comprises a laser beam and focusing parts thereof, and a pulse magnetic field generator device, procided on both sides of a magnetooptical recording medium, respectively. The laser beam and focusing parts thereof are formed of an objective lens connected to a moving coil which is provided with a magnet, thus the objective lens is movable relative to a magnetic layer of the magnetooptical recording medium by the interaction between the magnet and the moving coil. The magnet generates and applies a D.C. magnetic field of one polarity perpendicular to the magnetic thin film around a point where the laser beam is focused, while the pulse magnetic field generator device generates pulse magnetic field of the opposite polarity modulated by information signal around the point where the laser beam is focused. Thus one and opposite polarity magnetic field pulse row obtained by a sum of the D.C. magnetic field and the pulse magnetic field is applied to the magnetic thin film upon laser beam irradiation to perform the real-time overwrite operation.
Abstract:
A ferromagnetic metal powder comprises a ferromagnetic metal particle composed mainly of iron, a silicon compound layer formed on the surface of the ferromagnetic metal particle in such an amount that the amount of silicon is 0.1 to 1% by weight based on iron in the ferromagnetic metal particle, and a layer containing a nonferrous transition metal element compound in an amount of from 2 to 15% by weight based on the weight of iron in said ferromagnetic particle which is formed on the silicon compound layer.
Abstract:
The present invention relates to a magneto-optical recording apparatus, for example, as shown in FIG. 3, which is capable of rewriting information written in a magneto-optical recording medium by overwriting, wherein the magneto-optical recording medium 1 is irradiated with a laser light LB corresponding to an information signal only when the magneto-optical recording medium 1 is applied with a magnetic field sufficient to invert the magnetizing direction of the magneto-optical recording medium 1, whereby a noise-up region is prevented from being formed and high density recording can be satisfactorily carried out.
Abstract:
A dehumidifying container comprises an inner container having an opening at its upper end, and a bottom portion. The inner container is filled with a dehumidifying agent and has a discharge pipe provided upright at the center of its bottom portion. The discharge pipe has at least one slit in a wall thereof and an open lower end which protrudes downwardly through the bottom portion of the inner container. The inner container is detachably fitted into an outer container in such a manner that a space having a predetermined volume is formed between the respective bottom portions of the inner and outer containers. The dehumidifying agent absorbs moisture from the air and the so formed solution of the agent flows readily through the or each slit in the discharge pipe out through the open lower end of the pipe, and into said space. The upper end of the pipe is also open to assist such flow.
Abstract:
Abrasion-resistive, high permeability magnetic alloy consisting essentially of 6-9 wt. % of Si, 7-11 wt. % of Al, 2-5 wt. % of Cr, 0.05-2 wt. % of Ti, 0.02-0.3 wt. % of at least one member selected from P and C, and the balance of Fe. The alloy is suitable as a core material for a magnetic head.