摘要:
Systems and methods are provided for monitoring a correlation between heart rate and blood pressure in a patient. When a characteristic of the correlation exceeds a threshold, a patient status indicator signal is sent to a monitoring device In some embodiments, the patient status indicator signal indicates a particular medical condition or alerts a care provider to a change in status. In some embodiments, the heart rate signal is used to improve a blood pressure estimate generated by a different signal. In some embodiments, the heart rate, blood pressure and correlation signals are used in a predictive mathematical model to estimate patient status or outcome.
摘要:
According to embodiments, techniques for determining one or more physiological characteristics in a measurement system which may include cross-talk are disclosed. A sensor or probe may be used to generate two or more a plethysmograph or photoplethysmograph (PPG) signals from a patient. The obtained signals may include an infrared signal and a red signal, and may be subject to an additional measurement noise. The obtained signal may be combined to form a detected signal. The detected signal may be filtered to partially or fully remove noise. The filtered detected signal may be demodulated to separate the red signal and the infrared signal. The recovered red and infrared signals may be processed by additional filters to partially or fully remove cross-talk. The processed red and infrared signals may then be used to determine physiological characteristics of a patient such as a pulse rate, a respiration rate, and a blood oxygen saturation level using the wavelet transform and/or scalogram of at least one of the processed red and infrared signals. The partial or full removal of cross-talk from the red signal and infrared signal may result in a more reliable determination of physiological characteristics than would be possible in a system in which cross-talk was not removed.
摘要:
According to embodiments, systems and methods for computing a physiological parameter are provided. The physiological parameter may be calculated using a continuous wavelet transform technique as well as using a non-continuous wavelet transform technique. More than one value for the physiological parameter may be calculated using various techniques. The values may be evaluated to select a desired value, or an average or weighted average of the values may be computed to generate a desired value.
摘要:
According to embodiment, systems and methods for processing a physiological measurement and generating alarms based on the measurement are provided. Multiple features of a single physiological measurement may be concurrently monitored to generate alarms. One or more of the features may be based on a trend of the physiological measurement. One or more of the features may be based on a wavelet transform of the physiological measurement. Different features may be used in different combinations to lower the percentage of false alarms while still recognizing valid alarm events.
摘要:
The present disclosure is directed towards embodiments of systems and methods for discriminating (e.g., masking out) scale bands that are determined to be not of interest from a scalogram derived from a continuous wavelet transform of a signal. Techniques for determining whether a scale band is not of interest include, for example, determining whether a scale band's amplitude is being modulated by one or more other bands in the scalogram. Another technique involves determining whether a scale band is located between two other bands and has energy less than that of its neighboring bands. Another technique involves determining whether a scale band is located at about half the scale of another, more dominant (i.e., higher energy) band.
摘要:
According to embodiments, systems, devices, and methods for ridge selection in scalograms are disclosed. Ridges or ridge components are features within a scalogram which may be computed from a signal such as a physiological (e.g., photoplethysmographic) signal. Ridges may be identified from one or more scalograms of the signal. Parameters characterizing these ridges may be determined. Based at least in part on these parameters, a ridge density distribution function is determined. A ridge is selected from analyzing this ridge density distribution function. In some embodiments, the selected ridge is used to determine a physiological parameter such as respiration rate.
摘要:
Techniques for the display of a signal with a wavelet transform of that signal in a wavelet transform viewer are disclosed, according to embodiments. According to embodiments, the wavelet transform viewer can display a plot of physiological signals such as a photoplethysmograph (PPG) signal. A portion of the plot of the signal can be selected. A wavelet transform the selected portion of the signal can be calculated and a wavelet plot of the tranformed signal can be displayed simultaneously with that signal. A plot of the selected portion of the signal can also be simultaneously displayed with both the plot of the signal and the wavelet plot.
摘要:
A method of analysis of medical signals which uses wavelet transform analysis to decompose cardiac signals. Apparatus for carrying out the method, and cardiac apparatus adapted to employ the method are also described.
摘要:
A system for determining stroke volume of an individual. The system includes a skew-determining module that is configured to calculate a first derivative of photoplethysmogram (PPG) signals of the individual. The first derivative forms a derivative waveform. The skew-determining module is configured to determine a skew metric of the first derivative, wherein the skew metric is indicative of a morphology of at least one pulse wave detected from blood flow of the individual in the derivative waveform. The system also includes an analysis module that is configured to determine a stroke volume of the individual. The stroke volume is a function of the skew metric of the first derivative.
摘要:
Systems and methods are provided for storing event markers. The value of a monitored physiological metric may be monitored and compared to a reference value. A patient monitoring system may compute a difference between a monitored metric and a reference value, and compare the difference to a threshold value to determine whether a physiological event has occurred. Based on the determination, a patient monitoring system may store an event marker, trigger a response, update a metric value, or perform any other suitable function.