Abstract:
The present invention provides a composition comprising a plurality of labeled neurons, each of which is labeled by an expression construct that encodes a unique barcoded nucleic acid.
Abstract:
Disclosed herein are compounds, compositions and methods for modulating splicing of SMN2 mRNA in a subject. Also provided are uses of disclosed compounds and compositions in the manufacture of a medicament for treatment of diseases and disorders, including spinal muscular atrophy.
Abstract:
Provided herein, in some aspects, are methods of determining whether a candidate protein, more specifically a functional domain of a candidate protein, is essential for viability of cells of interest using clustered regularly interspaced short palindromic repeat (CPJSPR)-Cas9 technology which holds great promise for genetic screening and for the discovery of therapeutic targets.
Abstract:
Provided is an improved design of shRNA based on structural mimics of miR-451 precursors. These miR-451 shRNA mimics are channeled through a novel small RNA biogenesis pathway, require AGO2 catalysis and are processed by Drosha but are independent of DICER processing. This miRNA pathway feeds active elements only into Agog because of its unique catalytic activity. These data demonstrate that this newly identified small RNA biogenesis pathway can be exploited in vivo to produce active molecules.
Abstract:
A method for determining the number of nucleic acid molecules (NAMs) in a group of NAMs, comprising i) obtaining an amplified and mutagenized group of NAMs that was produced by a. subjecting the group of NAMs to a chemical mutagenesis which mutates only select nucleic acid bases in the group of NAMs at a rate of 10% to 90% thus forming a group of mutagenized NAMs (mNAMs), and b. amplifying the group of mNAMs; ii) obtaining sequences of the mNAMs in the group of amplified mNAMs; and iii) counting the number of different sequences obtained in step (ii) to determine the number of unique mNAMs in the group of mNAMS, thereby determining the number of NAMs in the group of NAMs.
Abstract:
A method that includes measuring the expression level of at least one transposon in a biological sample from a subject; and determining whether the measured transposon expression exceeds a predetermined level, and if so, administering to the subject a transposon inhibitor in an amount effective to reduce the expression level of a transposon.
Abstract:
The present invention provides compounds and methods for modulating target nucleic acids found in organelles or sub-organelles of cells. The invention includes, but is not limited to compounds and methods that modulate target nucleic acids in a sub-nuclear organelle, such as the nucleolus and/or a cajal body. In certain embodiments, the cell is in an animal.
Abstract:
Disclosed herein are compounds, compositions and methods for modulating splicing of SMN2 mRNA in a cell, tissue or animal. Also provided are uses of disclosed compounds and compositions in the manufacture of a medicament for treatment of diseases and disorders, including spinal muscular atrophy.
Abstract:
Provided is an improved design of shRNA based on structural mimics of miR-451 precursors. These miR-451 shRNA mimics are channeled through a novel small RNA biogenesis pathway, require AGO2 catalysis and are processed by Drosha but are independent of DICER processing. This miRNA pathway feeds active elements only into Ago2 because of its unique catalytic activity. These data demonstrate that this newly identified small RNA biogenesis pathway can be exploited in vivo to produce active molecules.
Abstract:
The present disclosure provides compounds comprising oligonucleotides complementary to a portion of the IKBKAP gene. Certain such compounds are useful for hybridizing to a portion of the IKBKAP gene, including but not limited to a portion of the IKBKAP gene in a cell. In certain embodiments, such hybridization results in modulation of splicing of the IKBKAP gene. In certain embodiments, the IKBKAP gene includes a mutation that results in defective splicing and a truncated IKAP protein. In certain embodiments, hybridization of oligonucleotides complementary to a portion of the IKBKAP gene results in a decrease in the amount of defective splicing and truncated IKAP protein. In certain embodiments, hybridization of oligonucleotides complementary to a portion of the IKBKAP gene results in an increase in the amount of normal splicing and functional, full-length IKAP protein. In certain embodiments, oligonucleotides are used to treat Familial Dysautonomia.