Abstract:
A system for the fluidized reinjection of fine particles (carryover) into a fluidized bed combustor. The carryover recirculation system includes a fluidized reinjection bed which is fluidized using clean gas from the induced draft fan outlet boosted by a small auxiliary fan. The fluidized fine particles can be reinjected into the fluidized combustor bed by either dense phase transport or by dilute phase transport.
Abstract:
Cement clinker is produced in that raw cement powder is preheated in a suspension-type heat exchanger and is de-acidified in a precalcining apparatus and clinkered in a fluidized bed and the clinker is subsequently cooled. An de-acidification of at least 95% is effected at a temperature above 85.degree. C. in a circulation system comprising a fluidized bed reactor, a cyclone separator and a recycling duct. The carbonaceous fuel required for the calcining and clinkering processes is fed in an amount of at least 65% (related to the total heat requirement) to the de-acidifying fluidized bed reactor and in an amount of at least 10% (related to the total heat requirement) to the clinkering fluidized bed reactor. The fuel supplied to the fluidizing bed reactor is burnt near stoichiometrically in two stages with fluidizing gas and secondary gas. The ratios of the rates and volumes of fluidizing gas to secondary gas are so selected that a means suspension density of 100 to 300 kg/m.sup.3 is maintained in the zone between the inlet for fluidizing gas and the inlet for fluidizing gas, and a mean suspension density of 5 to 30 kg/m.sup.3 is maintained above the inlet for secondary gas.
Abstract:
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
Abstract:
A fluid bed boiler and combustion method are provided having a first fast bed combustion zone followed by a second slow bed combustion zone. Coal, as a typical fuel, and limestone are fed to the first zone, where the coal undergoes combustion and sulfur is captured by the limestone. The solids which flow from the top of the first combustion zone are separated and introduced into a low velocity "slow" bubbling fluid bed in which arrays of heat exchange tubes are immersed. Additional heat transfer to water can be achieved by employing water walls for the first fast bed combustion zone.
Abstract:
Steam is generated in a controlled manner as a function of the steam demand by way of a combustor adapted to burn a fuel such as high sulfur coal in a fluidized bed. The steam demand and the steam available to supply the demand are modulated to change the rate of production of steam as a function of controlling the fluidization of fuel beds and/or the height of fuel in the beds. Any fuel beds which are slumped are maintained at a temperature slightly above the flash point temperature of the fuel.
Abstract:
A system and method for generating heat in which a particulate fuel material is separated into a relatively coarse material and a relatively fine material which is transferred to separate chambers. Air is passed through the coarse material at a relatively high velocity and through the fine material at a relatively low velocity to fluidize the materials and promote their combustion.
Abstract:
A reactor system and control method. The method includes feeding solid fuel and oxygen containing gas to a first fluidized bed reactor to form a fluidized bed of particles and combusting a first portion of the fuel in the bed with the oxygen containing gas to generate hot bed particles and a first stream of hot flue gas, conveying the first stream to the flue gas channel, transferring hot bed particles including a second portion of the solid fuel at a predetermined hot particles transfer rate from the first reactor to a second fluidized bed reactor, feeding fluidizing gas to the second reactor to form a second fluidized bed, and transferring bed particles from the second reactor to the first. The method includes first and second operation modes. In the first, the fluidizing gas is oxygen containing gas and, in the second, the gas includes steam, CO2, or inert gas.