Abstract:
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Abstract:
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Abstract:
A high pressure nitrogen pipeline, oxygen or plant air is diverted around a pressure letdown station to liquefy the gas or a portion of the gas for storage or air separation assist, with the remaining unused gaseous portion being returned to the pipeline downstream the letdown station. One or more heat exchangers and one or more expanders are used to cool down the gas and liquefy it. A generator or compressor may be coupled to the expanders employing companders for generating power or for further compression of the pipeline gas. In a further embodiment, natural gas is cooled to assist in liquefying the nitrogen by drying the natural gas and forming two streams wherein carbon dioxide is removed from a smaller stream which is applied to cascaded heat exchangers and the larger stream is expanded to further cool it. The two streams are applied to the heat exchangers for cooling and liquefying nitrogen gas or other merchant gas applied to the heat exchangers from a pipeline or other source. A portion of the nitrogen gas is tapped from the heat exchangers for expansion and the remaining portion cooled through the remaining heat exchangers with both portions applied to a separator. The separator vapor output is applied to the heat exchangers for cooling the nitrogen and the liquid gas is pumped to storage.
Abstract:
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Abstract:
A method and apparatus for the partial conversion of natural gas to liquid natural gas. Natural gas, at a high pressure and free of impurities which would hinder the formation of liquid natural gas, is split into first and second flow portions. The first flow portion is conducted through a first heat exchanger and thereafter through a second heat exchanger. From the second heat exchanger, the first flow portion is throttled into a collector, wherein part thereof flashes to liquid natural gas and a part thereof constitutes a cold saturated vapor to be vented from the collector. The vent remainder serves as a coolant for the second heat exchanger. The second flow portion passes through a restrictor and is thereby cooled. The vent remainder from the second heat exchanger is joined with the cooled second flow portion and this combination serves as a coolant for the first heat exchanger before it is conducted to a receiver.
Abstract:
A product cryogenic liquid mixture comprising oxygen and nitrogen having a chosen mole fraction of oxygen is produced by expanding, typically through a valve, a pressurized stream of a precursor fluid mixture, which may be liquid air, having a mole fraction of oxygen greater than said chosen mole fraction, and thereby forming a vapor phase depleted of oxygen and a liquid phase enriched in oxygen. The vapor phase is disengaged from the liquid phase in a phase separator. A stream of the vapor phase is condensed in a condenser. The condensate is collected in a storage vessel as the product cryogenic liquid mixture.
Abstract:
The invention relates to methods and systems for liquefaction of gases whose critical temperature is lower than the ambient temperature, such as, for instance, natural gas, air, nitrogen, oxygen, etc. Compressed to supercritical pressure gas to be liquefied is cooled by external refrigerator means to a predetermined final temperature that is lower than the saturation temperature of the liquefied gas, and then is throttled to a subcritical pressure. As a result, all gas supplied to the apparatus is liquefied without generating any flash gas, and controlled rate of liquefied gas subcooling is achieved. Three modifications of the apparatus for gas liquefaction employing refrigerator means, based on reversed gas cycles, are introduced. Another modification of the apparatus with refrigerator means applying open air cycle and Compressed Air Energy Storage (CAES) is also developed.
Abstract:
The gas produced by evaporation from the insulated vessels is separated into two component flows. A first component flow is compressed and while being cooled and liquified is used to transfer heat to the second component flow. The heated second component flow is then used as an energy source for driving the carrier, such as a ship. The reliquified flow is returned to the insulated vessel.