Abstract:
At least one pair of stripe shaped second discharge maintaining electrodes are formed between a second dielectric layer and a first dielectric layer so as to correspond to a first discharge maintaining electrodes, a second discharge maintaining electrodes have an electric resistance lower than that of the first discharge maintaining electrodes, at least one pair of bus electrodes are overlapped to the second discharge maintaining electrodes along a direction of length of two edges adjacent to each other of the pair of the first discharge maintaining electrodes.
Abstract:
A plasma display panel and a driving method thereof is adaptive for realizing high efficiency. In the plasma display panel, a sustaining electrode pair and an address electrode are included in each discharge cell. A first dielectric layer covers the sustaining electrode pair. To induce a discharge of the sustaining electrode pair, a floating electrode pair is formed parallel thereto on the first dielectric layer. A second dielectric layer and a protective film cover the floating electrode pair. Accordingly, two auxiliary electrodes are provided between the sustaining electrode pair so that when a voltage is applied to the sustaining electrode pair, the voltage is driven into the auxiliary electrodes. A primary discharge is thus induced between said auxiliary electrodes at a low voltage and therefore a long-path discharge is induced between the sustaining electrode pair at a low voltage, even though they are distanced apart from each other.
Abstract:
A plasma display panel that is capable of improving the discharge and light-emission efficiencies and the brightness. In the panel, a sustaining electrode pair is formed on an upper substrate in such a manner to be positioned at the edges of a discharge cell. A trigger electrode pair is positioned between the sustaining electrode pair to cause a trigger discharge for deriving a sustaining discharge. Dielectric layers are formed on the sustaining electrode pair and the trigger electrode pair to have a different thickness.
Abstract:
A plasma flat-panel display comprising a hermetically sealed gas filled enclosure. The enclosure includes a top glass substrate having a plurality of parallel sustaining electrode pairs deposited upon an interior surface thereof and at least one auxiliary electrode associated with each pair of sustaining electrodes deposited upon the interior surface between the associated sustaining electrodes. The enclosure also includes a thin dielectric film covering the sustaining and auxiliary electrodes and a bottom glass substrate separated from the top glass substrate. The bottom substrate includes a plurality of alternating barrier ribs and microgrooves. An address electrode is associated with each microgroove and a phosphor is deposited over a portion of each address electrode. A first voltage is applied to the auxiliary electrode to initiate a discharge between the auxiliary electrode and a sustaining electrode. A second voltage, that is greater than the first voltage is applied to the sustaining electrodes and causes the discharge to extend between the sustaining electrodes.
Abstract:
A plasma display panel device is provided which is capable of obtaining a uniform state of light emission for displaying and of reducing electromagnetic radiation while easily achieving a high-definition image display. The plasma display panel device includes a pair of row electrodes made up of a scanning electrode and a common electrode (sustaining electrode) which provides one display row and formed in parallel with a face of a front substrate (scanning substrate) facing a rear substrate wherein a folding-back electrode is formed on a common electrode.
Abstract:
A structure and driving method for a plasma display panel is disclosed in which discharge efficiency is improved and service-life of phosphors is increased. The structure for a plasma display panel includes a plurality of upper electrodes formed on an upper substrate at certain intervals in one direction, a dielectric layer formed on the upper substrate including the upper electrodes, an auxiliary electrode formed on the dielectric layer between adjacent upper electrodes, a passivation film formed on the dielectric layer including the auxiliary electrode, a lower electrode formed on a lower substrate opposite to the upper electrodes to be orthogonal to the upper electrodes, and a dielectric layer formed on the lower substrate including the lower electrode. The driving method for a plasma display panel includes the steps of generating discharge by a first pulse applied to one electrode of the electrodes, and applying a second pulse to other electrode within 1 &mgr;m from the time when the first pulse is applied to the one electrode.
Abstract:
A plasma flat-panel display comprising a hermetically sealed gas filled enclosure. The enclosure includes a top glass substrate having a plurality of parallel sustaining electrode pairs deposited upon an interior surface thereof and at least one control electrode associated with each pair of sustaining electrodes deposited upon the interior surface between the associated sustaining electrodes. The enclosure also includes a thin dielectric film covering the sustaining and control electrodes and a bottom glass substrate separated from the top glass substrate. The bottom substrate includes a plurality of alternating barrier ribs and microgrooves. An address electrode is associated with each microgroove and a phosphor is deposited over a portion of each address electrode.
Abstract:
A plasma display panel and a driving method thereof that is adaptive for realizing a high efficiency. In the plasma display panel, a sustaining electrode pair and an address electrode are included in each discharge cell. A first dielectric layer covers the sustaining electrode pair. A floating electrode pair is formed on the first dielectric layer in parallel to the sustaining electrode pair to induce a discharge of the sustaining electrode pair. A second dielectric layer and a protective film cover the floating electrode pair. Accordingly, two auxiliary electrodes are provided between the scanning/sustaining electrode and the common sustaining electrode to derive a voltage into said two auxiliary electrodes when a voltage is applied to the scanning/sustaining electrode and the common sustaining electrode, so that a primary discharge is induced between said two auxiliary electrodes at a low voltage and thus a long-path discharge is induced between the scanning/sustaining electrode and the common sustaining electrode spaced at a large distance from each other by a low voltage.
Abstract:
A plasma display panel having an auxiliary electrode for lowering a discharge starting voltage between discharge sustain electrodes and a method for driving the same are provided. In the plasma display panel having the auxiliary electrode and the method for driving the same, a thin auxiliary electrode is arranged between an X electrode and a Y electrode arranged in each discharge cell of the plasma display panel and an electrode driving pulse is applied to the auxiliary electrode at the point in time which is not later than the point in time at which a discharge sustain pulse starts. Accordingly, the discharge starting voltage of the main discharge is reduced.
Abstract:
A plasma display panel that is capable of improving the discharge and light-emission efficiencies and the brightness. In the panel, a sustaining electrode pair is formed on an upper substrate in such a manner to be positioned at the edges of a discharge cell. A trigger electrode pair is positioned between the sustaining electrode pair to cause a trigger discharge for deriving a sustaining discharge. Dielectric layers are formed on the sustaining electrode pair and the trigger electrode pair to have a different thickness.