Abstract:
The document relates to modulated sub-sampled digital filter banks, as well as to methods and systems for the design of such filter banks. In particular, the present document proposes a method and apparatus for the improvement of low delay modulated digital filter banks. The method employs modulation of an asymmetric low-pass prototype filter and a new method for optimizing the coefficients of this filter. Further, a specific design for a 64 channel filter bank using a prototype filter length of 640 coefficients and a system delay of 319 samples is given. The method substantially reduces artifacts due to aliasing emerging from independent modifications of subband signals, for example when using a filter bank as a spectral equalizer. The method is preferably implemented in software, running on a standard PC or a digital signal processor (DSP), but can also be hardcoded on a custom chip. The method offers improvements for various types of digital equalizers, adaptive filters, multiband companders and spectral envelope adjusting filter banks used in high frequency reconstruction (HFR) or parametric stereo systems.
Abstract:
A system and method for representing quasi-periodic waveforms, for example, representing a plurality of limited decompositions of the quasi-periodic waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the quasi-periodic waveform. Data-structure attributes are created and used to reconstruct the quasi-periodic waveform. Features of the quasi-periodic wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g., lowest frequency “rate” component) that varies over time (by a factor of two to three) many overlapping filters use bandpass and overlap parameters that allow tracking the component's frequency version on changing quarter-phase basis.
Abstract:
Filter-chain-creating, digital signal-processing structure, for performing frequency band analysis and selection, which structure features a time-slice-based digital fabricating/instantiating engine, and engine-software-operating structure designed to operate the engine in a time-slice-based fabrication mode to create a chained arrangement of at least one of (a) Type-I, and (b) combined Type-I and Type-I wave digital filter (WDF) agencies in an overall, composite WDF structure to function for frequency band analysis and selection.
Abstract:
The document relates to modulated sub-sampled digital filter banks, as well as to methods and systems for the design of such filter banks. In particular, the present document proposes a method and apparatus for the improvement of low delay modulated digital filter banks. The method employs modulation of an asymmetric low-pass prototype filter and a new method for optimizing the coefficients of this filter. Further, a specific design for a 64 channel filter bank using a prototype filter length of 640 coefficients and a system delay of 319 samples is given. The method substantially reduces artifacts due to aliasing emerging from independent modifications of subband signals, for example when using a filter bank as a spectral equalizer. The method is preferably implemented in software, running on a standard PC or a digital signal processor (DSP), but can also be hardcoded on a custom chip. The method offers improvements for various types of digital equalizers, adaptive filters, multiband companders and spectral envelope adjusting filter banks used in high frequency reconstruction (HFR) or parametric stereo systems.
Abstract:
The document relates to modulated sub-sampled digital filter banks, as well as to methods and systems for the design of such filter banks. In particular, the present document proposes a method and apparatus for the improvement of low delay modulated digital filter banks. The method employs modulation of an asymmetric low-pass prototype filter and a new method for optimizing the coefficients of this filter. Further, a specific design for a 64 channel filter bank using a prototype filter length of 640 coefficients and a system delay of 319 samples is given. The method substantially reduces artifacts due to aliasing emerging from independent modifications of subband signals, for example when using a filter bank as a spectral equalizer. The method is preferably implemented in software, running on a standard PC or a digital signal processor (DSP), but can also be hardcoded on a custom chip. The method offers improvements for various types of digital equalizers, adaptive filters, multiband companders and spectral envelope adjusting filter banks used in high frequency reconstruction (HFR) or parametric stereo systems.
Abstract:
The document relates to modulated sub-sampled digital filter banks, as well as to methods and systems for the design of such filter banks. In particular, the present document proposes a method and apparatus for the improvement of low delay modulated digital filter banks. The method employs modulation of an asymmetric low-pass prototype filter and a new method for optimizing the coefficients of this filter. Further, a specific design for a (64) channel filter bank using a prototype filter length of (640) coefficients and a system delay of (319) samples is given. The method substantially reduces artifacts due to aliasing emerging from independent modifications of subband signals, for example when using a filter bank as a spectral equalizer. The method is preferably implemented in software, running on a standard PC or a digital signal processor (DSP), but can also be hardcoded on a custom chip. The method offers improvements for various types of digital equalizers, adaptive filters, multiband companders and spectral envelope adjusting filterbanks used in high frequency reconstruction (HFR) or parametric stereo systems.
Abstract:
A system and method for representing quasi-periodic (“qp”) waveforms, for example, representing a plurality of limited decompositions of the qp waveform. Each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. Data-structure attributes are created and used to reconstruct the qp waveform. Features of the qp wave are tracked using pattern-recognition techniques. The fundamental rate of the signal (e.g., heartbeat) can vary widely, for example by a factor of 2-3 or more from the lowest to highest frequency. To get quarter-phase representations of a component (e.g., lowest frequency “rate” component) that varies over time (by a factor of two to three) many overlapping filters use bandpass and overlap parameters that allow tracking the component's frequency version on changing quarter-phase basis.
Abstract:
Filter-chain-creating, digital signal-processing structure, for performing frequency band analysis and selection, which structure features a time-slice-based digital fabricating/instantiating engine, and engine-software-operating structure designed to operate the engine in a time-slice-based fabrication mode to create a chained arrangement of at least one of (a) Type-I, and (b) combined Type-I and Type-I wave digital filter (WDF) agencies in an overall, composite WDF structure to function for frequency band analysis and selection.
Abstract:
The present invention provides a system and method for representing quasi-periodic (“qp”) waveforms comprising, representing a plurality of limited decompositions of the qp waveform, wherein each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. These decompositions are stored into a data structure having a plurality of attributes. Optionally, these attributes are used to reconstruct the qp waveform, or patterns or features of the qp wave can be determined by using various pattern-recognition techniques. Some embodiments provide a system that uses software, embedded hardware or firmware to carry out the above-described method. Some embodiments use a computer-readable medium to store the data structure and/or instructions to execute the method.
Abstract:
The present invention provides a system and method for representing quasi-periodic (“qp”) waveforms comprising, representing a plurality of limited decompositions of the qp waveform, wherein each decomposition includes a first and second amplitude value and at least one time value. In some embodiments, each of the decompositions is phase adjusted such that the arithmetic sum of the plurality of limited decompositions reconstructs the qp waveform. These decompositions are stored into a data structure having a plurality of attributes. Optionally, these attributes are used to reconstruct the qp waveform, or patterns or features of the qp wave can be determined by using various pattern-recognition techniques. Some embodiments provide a system that uses software, embedded hardware or firmware to carry out the above-described method. Some embodiments use a computer-readable medium to store the data structure and/or instructions to execute the method.