Abstract:
Encoding an audio signal is provided wherein the audio signal includes a first audio channel and a second audio channel, the encoding comprising subband filtering each of the first audio channel and the second audio channel in a complex modulated filterbank to provide a first plurality of subband signals for the first audio channel and a second plurality of subband signals for the second audio channel, downsampling each of the subband signals to provide a first plurality of downsampled subband signals and a second plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, deriving spatial parameters from the sub-subband signals and from those downsampled subband signals that are not further subband filtered, and deriving a single channel audio signal comprising derived subband signals derived from the first plurality of downsampled subband signals and the second plurality of downsampled subband signals. Further, decoding is provided wherein an encoded audio signal comprising an encoded single channel audio signal and a set of spatial parameters is decoded by decoding the encoded single channel audio channel to obtain a plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, and deriving two audio channels from the spatial parameters, the sub-subband signals and those downsampled subband signals that are not further subband filtered.
Abstract:
The present invention relates to coding of audio signals, and in particular to high frequency reconstruction methods including a frequency domain harmonic transposer. A system and method for generating a high frequency component of a signal from a low frequency component of the signal is described. The system comprises an analysis filter bank (501) comprising an analysis transformation unit (601) having a frequency resolution of Δf; and an analysis window (611) having a duration of DA; the analysis filter bank (501) being configured to provide a set of analysis subband signals from the low frequency component of the signal; a nonlinear processing unit (502, 650) configured to determine a set of synthesis subband signals based on a portion of the set of analysis subband signals, wherein the portion of the set of analysis subband signals is phase shifted by a transposition order T; and a synthesis filter bank (504) comprising a synthesis transformation unit (602) having a frequency resolution of QΔf; and a synthesis window (612) having a duration of Ds; the synthesis filter bank (504) being configured to generate the high frequency component of the signal from the set of synthesis subband signals; wherein Q is a frequency resolution factor with Q≧1 and smaller than the transposition order T; and wherein the value of the product of the frequency resolution Δf and the duration DA of the analysis filter bank is selected based on the frequency resolution factor Q.
Abstract:
Methods and an apparatus for enhancement of source coding systems utilizing high frequency reconstruction (HFR) are introduced. The problem of insufficient noise contents is addressed in a reconstructed highband, by using Adaptive Noise-floor Addition. New methods are also introduced for enhanced performance by means of limiting unwanted noise, interpolation and smoothing of envelope adjustment amplification factors. The methods and apparatus used are applicable to both speech coding and natural audio coding systems.
Abstract:
A method for determining an inverse filter for altering the frequency response of a loudspeaker so that with the inverse filter applied in the loudspeaker's signal path the inverse-filtered loudspeaker output has a target frequency response, and optionally also applying the inverse filter in the signal path, and a system configured (e.g., a general or special purpose processor programmed and configured) to determine an inverse filter. In some embodiments, the inverse filter corrects the magnitude of the loudspeaker's output. In other embodiments, the inverse filter corrects both the magnitude and phase of the loudspeaker's output. In some embodiments, the inverse filter is determined in the frequency domain by applying eigenfilter theory or minimizing a mean square error expression by solving a linear equation system.
Abstract:
An apparatus for processing a plurality of real-valued subband signals using a first real-valued subband signal and a second real-valued subband signal to provide at least a complex-valued subband signal comprises a multiband filter for providing an intermediate real-valued subband signal and a calculator for providing the complex-valued subband signal by combining a real-valued subband signal from the plurality of real-valued subband signals and the intermediate subband signal.
Abstract:
The present invention relates to a new method and apparatus for improvement of High Frequency Reconstruction (HFR) techniques using frequency translation or folding or a combination thereof. The proposed invention is applicable to audio source coding systems, and offers significantly reduced computational complexity. This is accomplished by means of frequency translation or folding in the subband domain, preferably integrated with spectral envelope adjustment in the same domain. The concept of dissonance guard-band filtering is further presented. The proposed invention offers a low-complexity, intermediate quality HFR method useful in speech and natural audio coding applications.
Abstract:
Methods and an apparatus for enhancement of source coding systems utilizing high frequency reconstruction (HFR) are introduced. The problem of insufficient noise contents is addressed in a reconstructed highband, by using Adaptive Noise-floor Addition. New methods are also introduced for enhanced performance by means of limiting unwanted noise, interpolation and smoothing of envelope adjustment amplification factors. The methods and apparatus used are applicable to both speech coding and natural audio coding systems.
Abstract:
Encoding an audio signal is provided wherein the audio signal includes a first audio channel and a second audio channel, the encoding comprising subband filtering each of the first audio channel and the second audio channel in a complex modulated filterbank to provide a first plurality of subband signals for the first audio channel and a second plurality of subband signals for the second audio channel, downsampling each of the subband signals to provide a first plurality of downsampled subband signals and a second plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, deriving spatial parameters from the sub-subband signals and from those downsampled subband signals that are not further subband filtered, and deriving a single channel audio signal comprising derived subband signals derived from the first plurality of downsampled subband signals and the second plurality of downsampled subband signals. Further, decoding is provided wherein an encoded audio signal comprising an encoded single channel audio signal and a set of spatial parameters is decoded by decoding the encoded single channel audio channel to obtain a plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, and deriving two audio channels from the spatial parameters, the sub-subband signals and those downsampled subband signals that are not further subband filtered.
Abstract:
Encoding an audio signal is provided wherein the audio signal includes a first audio channel and a second audio channel, the encoding comprising subband filtering each of the first audio channel and the second audio channel in a complex modulated filterbank to provide a first plurality of subband signals for the first audio channel and a second plurality of subband signals for the second audio channel, downsampling each of the subband signals to provide a first plurality of downsampled subband signals and a second plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, deriving spatial parameters from the sub-subband signals and from those downsampled subband signals that are not further subband filtered, and deriving a single channel audio signal comprising derived subband signals derived from the first plurality of downsampled subband signals and the second plurality of downsampled subband signals. Further, decoding is provided wherein an encoded audio signal comprising an encoded single channel audio signal and a set of spatial parameters is decoded by decoding the encoded single channel audio channel to obtain a plurality of downsampled subband signals, further subband filtering at least one of the downsampled subband signals in a further filterbank in order to provide a plurality of sub-subband signals, and deriving two audio channels from the spatial parameters, the sub-subband signals and those downsampled subband signals that are not further subband filtered.
Abstract:
The present invention provides a new method and an apparatus for spectral envelope encoding. The invention teaches how to perform and signal compactly a time/frequency mapping of the envelope representation, and further, encode the spectral envelope data efficiently using adaptive time/frequency directional coding. The method is applicable to both natural audio coding and speech coding systems and is especially suited for coders using SBR [WO 98/57436] or other high frequency reconstruction methods.