Abstract:
A CCD and CMOS image pickup module including a circuit main board on which an image sensor (CMOS, CCD) and relevant electronic elements are laid. A lens seat is disposed on an upper edge of a package of the image sensor. The lens seat has an image pickup cylinder correspondingly positioned above a coupling transistor of the image sensor. The lens seat covers and encloses the image sensor with the connecting section of the bottom of the image pickup cylinder sealedly attaching to the periphery of the top face of the package of the image sensor. With the profile of the outer periphery of the package of the image sensor serving as a normal standard for the axis of the lens, the axis of the lens being projected onto the sensor center of the coupling transistor.
Abstract:
The present invention includes a lens holder base, a first covering element and a second covering element. A V shape trench is formed on the top surface of the lens holder base for holding the lens. Further, the trench is preferably formed to be orthogonal to the CCD. The first covering element and the second covering element are utilized for preventing the noise light from interfereing the CCD. The second covering element is a flat plane having a protrudent portion, which is connected to the first covering element. The flat plane portion of the second covering element has screws that are used to connect to the top surface of the lens holder base. An adjusting element is set on the top of the protrudent portion for adjusting the focal length of the lens set.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
A reflection reading light guide that emits light of a reflection reading light source, from a reflected light emission surface to bill S; a transmission reading light guide that emits light of a transmission reading light source, from a transmitted light emission surface to bill S; a rod-lens array that focuses reflected light from the bill S and/or transmitted light transmitted through bill S; a light receiving element that receives light collected by the rod-lens array; and a frame including a housing portion that houses the reflection reading light guide are disclosed. A light blocking portion that protrudes from the reflected light emission surface of the reflection reading light guide toward optical axis Z of the rod-lens array is included in the housing portion, and includes a positioning reference surface for the reflection reading light guide. Influence of stray light is reduced, and accuracy of read image is improved.
Abstract:
An image sensor including: light guides for irradiating light onto an irradiated object; a lens that focuses reflected light that was reflected by the irradiated object; a sensor that receives the reflected light that was focused by the lens; and a housing. The housing houses or holds the light guides, the lens, and the sensor, and is formed by integrating a housing metal portion and a housing resin portion.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
This image reading apparatus, includes: a first retaining member that retains a lens unit; a second retaining member that retains a sensor unit; and a positioning member that sets a relative position between the first retaining member and the second retaining member, wherein the positioning member comprises: a first concave portion that is sagged from a first contact surface to be in contact with the first retaining member; and a second concave portion that is sagged from a second contact surface to be in contact with the second retaining member, and the positioning member is fixed to the first retaining member and the second retaining member by an adhesive filled in the first concave portion and the second concave portion.
Abstract:
An imaging optical array includes a plurality of imaging optical elements, which is arranged in a line in an arrangement direction, each including incidence lens to which light from an object is incident, an emission lens that emits light, and a light guiding portion that connects the incidence lens and the emission lens and that guides the light incident from the incidence lens to the emission lens, and which images an erect equal-magnification image of an object by the incidence lens and the emission lens, in which the plurality of imaging optical elements is integrally formed of a transparent medium in a state where the respective light guiding portions of the plurality of imaging optical elements are arranged in a line in the arrangement direction, and a void between the light guiding portions of the imaging optical elements adjacent to each other is empty in the transparent medium.
Abstract:
An image reading apparatus has a platen, first and second carriages, a light source supported on the first carriage, a first mirror to deflect reflected light from the original document toward the second carriage, one or more second mirrors supported on the second carriage to guide the light from the first mirror to image reading device, and rail members. The first carriage has first and second mirror support portions for supporting one side edge portion of the first mirror by two points, and a third mirror support portion for supporting the other side edge portion by one point. The first carriage is supported slidably at its opposite side edge portions respectively on the rail members via slide members disposed at four right and left places including two front and back places, and a height position is adjustable for supporting the first mirror by one point.
Abstract:
A lens array unit mounting structure mounts a lens array unit in a recess provided in a housing of an image reading device. The structure includes a right projection and a left projection provided on the lens array unit and includes a right groove and a left groove provided in the recess of the housing. The lens array unit is secured in the recess of the housing by engaging the right projection with the right groove and engaging the left projection with the left groove.