摘要:
A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing,
摘要:
Provided is a system for and a method of processing an optical fiber, such as tapering an optical fiber. The method includes receiving fiber parameters defining characteristics of an optical fiber, modeling an idealized fiber based on the fiber parameters to establish modeled data, and establishing processing parameters. A processing operation is performed on the optical fiber according to the processing parameters to produce a resultant fiber. Aspects of the resultant fiber are measured to establish measured data. The measured data and the modeled data are normalized to a common axis and a difference between the two is determined. The processing parameters are adjusted based on the differences.
摘要:
A method of forming an imaging fibre apparatus comprises arranging rods to form a plurality of stacks each comprising a respective plurality of rods, wherein: for each stack, the respective plurality of rods comprises rods having different core sizes, the rods of different core sizes being arranged in a selected arrangement, and the rods of different core sizes being arranged such that each stack has a respective selected shape; wherein the selected shape or shapes are such that the stacks stack together in a desired arrangement; the method further comprising: drawing each of the plurality of stacks; stacking together the plurality of drawn stacks together in the desired arrangement to form a further stack; drawing the further stack; and using the drawn further stack to form an imaging fibre apparatus, wherein the selected arrangement of the rods in each stack and the selected shape or shapes of the stacks are such that the further stack comprises a repeating pattern of rods of different core sizes.
摘要:
Optical waveguide cores having refractive index profiles that vary angularly about a propagation axis of the core can provide single-mode operation with larger core diameters than conventional waveguides. In one representative embodiment, an optical waveguide comprises a core that extends along a propagation axis and has a refractive index profile that varies angularly about the propagation axis. The optical waveguide can also comprise a cladding disposed about the core and extending along the propagation axis. The refractive index profile of the core can vary angularly along a length of the propagation axis.
摘要:
Optical waveguide cores having refractive index profiles that vary angularly about a propagation axis of the core can provide single-mode operation with larger core diameters than conventional waveguides. In one representative embodiment, an optical waveguide comprises a core that extends along a propagation axis and has a refractive index profile that varies angularly about the propagation axis. The optical waveguide can also comprise a cladding disposed about the core and extending along the propagation axis. The refractive index profile of the core can vary angularly along a length of the propagation axis.
摘要:
A method for adjusting an etchability of a first borosilicate glass by heating the first borosilicate glass; combining the first borosilicate glass with a second borosilicate glass to form a composite; and etching the composite with an etchant. A material having a protrusive phase and a recessive phase, where the protrusive phase protrudes from the recessive phase to form a plurality of nanoscale surface features, and where the protrusive phase and the recessive phase have the same composition.
摘要:
Optical waveguide cores having refractive index profiles that vary angularly about a propagation axis of the core can provide single-mode operation with larger core diameters than conventional waveguides. In one representative embodiment, an optical waveguide comprises a core that extends along a propagation axis and has a refractive index profile that varies angularly about the propagation axis. The optical waveguide can also comprise a cladding disposed about the core and extending along the propagation axis. The refractive index profile of the core can vary angularly along a length of the propagation axis.
摘要:
A multicore fiber is provided. The multicore fiber includes a plurality of cores spaced apart from one another, and a cladding surrounding the plurality of cores and defining a substantially rectangular or cross-sectional shape having four corners. Each corner has a radius of curvature of less than 1000 microns. The multicore fiber may be drawn from a preform in a circular draw furnace in which a ratio of a maximum cross-sectional dimension of the preform to an inside diameter of the preform to an inside diameter of the draw furnace is greater than 0.60. The multicore fiber may have maxima reference surface.
摘要:
A twin fiber laser arrangement is configured with active and passive fibers supporting respective signal and pump lights and a reflective coating surrounding the fibers along a section of the arrangement. The passive fiber has regions covered by respective protective layer and coating-free regions alternating with the layer covered regions, wherein the reflective coating is configured to overlap the protective layer which shields the end of the reflective coating from high power pump light.
摘要:
Methods of forming an overclad portion of an optical fiber are described which include positioning a core cane member in an overclad tube to form a rod and tube assembly. Thereafter, glass soot pellets are positioned in the rod and tube assembly between the core cane member and an interior sidewall of the overclad tube. The rod and tube assembly is then redrawn under conditions effective to form the overclad tube and the glass soot pellets into a continuous, void-free glass layer surrounding the core cane member at a sintering time tsinter of at least 1800 seconds thereby forming an overclad portion of an optical fiber.