摘要:
Photonic bandgap fibers are described that can be solid across the core and clad and have a large core diameter with little loss in the fundamental mode. In addition, the mode loss of the higher order modes can be much greater than that of the fundamental mode, providing high power fibers with high effective mode area. Excellent single mode output can be obtained from the fibers in length scale close to what is required for fiber laser and amplifiers.
摘要:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
摘要:
A method and manufacturing apparatus for forming one or several material layers inside a basic tube, which basic tube is used in the manufacture of an optical fiber preform. The surface inside the basic tube is electrically charged by guiding a first electrically charged gas flow inside the basic tube, whereafter a second electrically charged gas flow is guided into the basic tube. The gas flow contains material particles and the sequentially alternating first gas flow and second gas flow have opposite charges.
摘要:
A method for charging particles used for processing of a material. At least a gaseous reactant is supplied and oxidizing gas is supplied to the reactant. The oxidizing gas is charged electrically before it is supplied to the reactant. The reactant and the oxidizing gas form charged particles. The material to be processed is advantageously a multicomponent oxide construction, such as an optical fiber preform. The invention also related to a charging device implementing the method.
摘要:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
摘要:
A fiber optic imaging element includes medium-expansion and a fabrication method including: (1) matching a core glass rod with a cladding glass tube to perform mono fiber drawing; (2) arranging the mono fibers into a mono fiber bundle rod, and then drawing the mono fiber bundle rod into a multi fiber; (3) arranging the multi fiber into a multi fiber bundle rod, and then drawing the multi fiber bundle rod into a multi-multi fiber; (4) cutting the multi-multi fiber, and then arranging the multi-multi fiber into a fiber assembly buddle, then putting the fiber assembly buddle into a mold of heat press fusion process, and performing the heat press fusion process to prepare a block of the fiber optic imaging element with medium-expansion; and (5) edged rounding, cutting and slicing, face grinding and polishing the prepared medium-expansion block into a billet.
摘要:
The embodiments disclosed herein seek to ameliorate high costs associated with the use of ultra-pure silica by using a lower-cost starting material and purifying the lower-cost starting material to an acceptable level of purity during the preform manufacturing process. In one embodiment, a nucleating compound is coated on a thin-walled silica tube, which upon cooling, forms cristobalite allowing for easy removal of the thin-walled silica tube.
摘要:
The present invention, even in the case where the size of a preform itself is increased, enables production of a multi-core optical fiber in which cores are arranged with high accuracy. A plurality of core members each being rod-like are fixed by an array fixing member while a relative positional relation of the plurality of core members is fixed, and the plurality of core members and a cladding member are integrated into one piece, and thus a preform is obtained. By drawing the obtained preform, a multi-core optical fiber in which core arrangement is controlled with high accuracy is obtained.
摘要:
A multi-core optical fiber includes a plurality of core portions. The diameter of each of the core portions is 12 micrometers or smaller, the relative refractive-index difference of the core portions with respect to the cladding portion is 0.2% or larger, the cut-off wavelength is 1.53 micrometers or smaller, the bending loss at a 1.55-micrometer wavelength is 10 dB/m or smaller, the effective core area at a 1.55-micrometer wavelength is 30 μm2 or larger, and the cross-talk of light between the core portions is −35 decibels or smaller.
摘要:
The specification describes the production of optical fibers and optical fiber preforms using Chemical Powder Deposition (CPD). In this process a slurry of silica powders and dopant powders in a liquid carrier is prepared and the inside surface of a silica glass starter tube is coated with the slurry, then dried. The coating is then consolidated and the tube collapsed as in the conventional MCVD process. Multiple coatings, and coatings with varying compositions, can be used to produce any desired profile. In an alternative embodiment, doped silica glass of the desired final composition is prepared, and then pulverized to form the powder for the slurry. In both embodiments, the use of powders of known composition in the slurry allows direct control over the final glass composition, as compared with conventional processes in which the composition in the final glass is indirectly controlled by control of the thermodynamics of a vapor phase reaction.