Abstract:
Provided is a photochemical reaction device wherein two partitions formed from an optically transparent material are arranged apart from each other between a light source and a reaction liquid, and an optically transparent fluid introduction/discharge means for introducing an optically transparent fluid between the partitions and discharging the fluid and a state change detection means for detecting a change in the state of the optically transparent fluid at the discharge side of the optically transparent fluid introduction/discharge means are provided. Also provided are a photochemical reaction method that uses the photochemical reaction device and a lactam production method that uses the photochemical reaction method. The present invention prevents decreases in the performance of the light source even when the optically transparent material in the photochemical reaction device is damaged, and makes it possible to reliably prevent ignition even if the reaction liquid is a flammable liquid.
Abstract:
Provided is a photochemical reaction device wherein two partitions formed from an optically transparent material are arranged apart from each other between a light source and a reaction liquid, and an optically transparent fluid introduction/discharge means for introducing an optically transparent fluid between the partitions and discharging the fluid and a state change detection means for detecting a change in the state of the optically transparent fluid at the discharge side of the optically transparent fluid introduction/discharge means are provided. Also provided are a photochemical reaction method that uses the photochemical reaction device and a lactam production method that uses the photochemical reaction method. The present invention prevents decreases in the performance of the light source even when the optically transparent material in the photochemical reaction device is damaged, and makes it possible to reliably prevent ignition even if the reaction liquid is a flammable liquid.
Abstract:
The present disclosure provides a method for preparing a caprolactam and the method includes steps of subjecting cyclohexanone oxime and sulfuric acid to a Beckmann rearrangement reaction to obtain a rearrangement mixture; neutralizing the rearrangement mixture and extracting the neutralized rearrangement mixture using an organic solvent sequentially; and subjecting the extracted organic solution to a hydrogenation reaction so as to simplify the process to produce a high quality caprolactam.
Abstract:
Methods for producing lactams from oximes by performing a Beckmann rearrangement using a silicoaluminophosphate catalyst are provided. These catalysts may be used in gas phase or liquid phase reactions to convert oximes into lactams. High conversion of oxime and high selectivity for the desired lactams are produced using the disclosed methods, including high conversion and selectivity for ε-caprolactam produced from cyclohexanone oxime and high conversion and selectivity for ω-laurolactam produced from cyclododecanone oxime.
Abstract:
The present invention relates to a method for producing a high purity, high quality amide compound, particularly, lactam. A first embodiment of the present invention is characterized in that an amount of each of a halide, an aldehyde compound, an alcohol compound and a nitrile compound contained in a solution recycled into an oxime-forming step is controlled to an amount of 0.4 mol % or less based on the ketone as a starting material. A second embodiment of the present invention is characterized in that one or more compounds selected from the group consisting of a ketone, an oxime and an amide compound are purified by hydrogenation and/or crystallization for eliminating impurities containing a double bond. A third embodiment of the present invention is characterized in that a content of impurities having a cyclic bridge structure is controlled by using a cycloalkanone purified by recrystallization.
Abstract:
A redox ammoximation process in which a ketone or aldehyde is reacted with ammonia and oxygen in the presence of a catalyst, wherein: the catalyst is an aluminophosphate based redox catalyst having the qualitative general formula (I) M1M2AlPO-5 (I) in which M1 is at least one transition metal atom having redox catalytic capability; M2 is at least one metal atom in the (IV) oxidation state; M1 and M2 are different from each other; and a proportion of the phosphorous atoms in the M1M2AlPO-5 type structure are replaced by M2 atoms.
Abstract:
Methods for producing lactams from oximes by performing a Beckmann rearrangement using a silicoaluminophosphate catalyst are provided. These catalysts may be used in gas phase or liquid phase reactions to convert oximes into lactams. High conversion of oxime and high selectivity for the desired lactams are produced using the disclosed methods, including high conversion and selectivity for ε-caprolactam produced from cyclohexanone oxime and high conversion and selectivity for ω-laurolactam produced from cyclododecanone oxime.