Abstract:
A resonant source element is configured to generate seismic waves in water. The resonant source element includes a housing having two openings covered by first and second pistons, wherein the first and second pistons are configured to freely translate relative to the housing to generate the seismic waves; and a high-pressure system configured to discharge inside the housing and to actuate the first and second pistons. The first and second pistons are configured to oscillate after the high-pressure system is fired to generate low-frequency seismic waves.
Abstract:
Techniques are disclosed herein relating to distribution of fluids. These techniques may be useful in, for example, supplying pressurized air to seismic sources (or arrays of seismic sources), such as those used in marine seismic operations. Some embodiments of this disclosure include a pipe that passes through a fluid distribution block. The pipe may be configured such that it is able to slide along and/or twist about a longitudinal axis of the distribution block. This technique may reduce the effects of the various stresses that may operate on marine seismic source equipment as it is towed through a body of water.
Abstract:
An air gun for use in generating seismic energy impulses operable at pressures below 1000 psi that reduces high frequencies and cavitation around the discharge of the air gun in order to mitigate damage to the marine environment, the air gun providing a sliding seal at the firing piston, an extension of port widths beyond the diameter of the firing piston and capability to control the speed of the shuttle assembly to reduce and eliminate some of the possible causes of the objectionable high frequencies and cavitation.
Abstract:
A very low frequency marine seismic source has a reservoir of water (47) feeding water to an aperture communicating with the surrounding water (13). The rate of water flow through the aperture is controlled by a rotor disc (11) and stator disc (9) having holes which overlap to a greater or lesser extent as the rotor rotates. The modulation of the flow of water produces modulated pressure signal which is radiated into the surrounding water. The device is intended to produce acoustic signals over a band extending down to 0.5 Hz or lower.
Abstract:
A marine seismic source array includes multiple strings of marine seismic source elements. A first string has a first specified arrangement of air guns between a beginning of the first string and an end of the first string. A second string has a second, different specified arrangement of the air guns between a beginning of the second string and an end of the second string. The second arrangement is the reverse of the first arrangement. A specified arrangement of air guns may be defined, for example, by a number of air guns in each seismic source element, a chamber volume of each air gun, a spacing of the air guns, or any suitable combination of these and other parameters.
Abstract:
System for generating pressure waves for deep seismic surveys operating in an underwater environment below the surface, suitable for investigating subcrustal objectives for prospecting purposes in the search for hydrocarbons and/or minerals. The system comprises one or more autonomous underwater vehicles organized in swarms, independent and coordinated, each housing one or more autonomous acoustic sea sources with self-propelled striker pistons. This system is served by a system of supporting surface stations, for reprovisioning, recovery actions, checking the well-being of the single vehicles and swarms and maintenance. The system is capable of using both conventional and non-conventional self-charged acoustic sea seismic sources. The system is capable of replicating the effect of a conventional source operated from the surface. The seismic sea source of the non-conventional acoustic type, proposed herein, can release a high-intensity pressure wave produced by a system of two striker pistons, which does not consume air when operating as it does not disperse air or another gas in water and does not produce mass variations of the device during its functioning and allows the amplitude and duration of the sound wave emitted and characteristics of the emission spectrum, to be regulated.
Abstract:
A seismic air gun includes an operating chamber, a firing chamber, a port, and a longitudinally disposed cavity sized and shaped to accept a plurality of wires. A moveable shuttle includes a shuttle flange within the operating chamber at one end and a firing shuttle flange at the other end proximate the port and firing chamber. The return force urging the shuttle from the unloaded position to the loaded position is independent of the radial thickness of the shuttle and is directly proportionate to the difference between a first and a second radial cross-sectional thickness of the shuttle flange. As a result, the return force can be optimized without any resulting loss of structural integrity to the shuttle, thereby allowing the port to stay open longer and increasing the amplitude of the primary seismic wave. Seals allow the gun to operating without water lubrication.
Abstract:
In the oil industry, the acoustic sounding method is a well-known technique for taking the depth measurements of particular attributes of an oil well or borehole. The method involves sending a short, sharp, clear, loud bang sound down a borehole, normally between the inside wall of the borehole casing, commonly referred to as the annulus and the outside of the production tubing string, and recording the echoes generated. One device for generating the sound needed in the acoustic sounding method is an air or gas pressurized chamber which is discharged at or near the wellhead of the borehole. The sound being generated by this device, commonly known as an acoustic generator, comes from the energy released by the equilibration of the different gas pressures. The current invention is an acoustic generator and its control unit that uses several new and novel features to improve the quality of the sound generated and echoes detected in the acoustic sounding method such as a firing mechanism that is not dependent on the force created by the gas pressure difference between the pressure chamber and the wellhead.
Abstract:
A device including a housing having an inside diameter defining a first chamber and a port formed through the housing in fluid communication with the first chamber. A shuttle flange, having a diameter, is moveably positioned within the first chamber. The shuttle flange moves during a gas-release cycle between i) a closed position blocking the port containing the compressed gas in the first chamber, and ii) an open position exposing an exit area of the port through which the compressed gas is discharged to produce a primary pressure pulse. Desirably, the primary pressure pulse produced has an average rising slope less than 2.9 bar-m/ms. A method for generating a seismic pressure pulse in water includes the steps of, confining a compressed gas within a chamber having a port, creating an exit area through the port by moving a shuttle along the length of the port during a gas-release cycle, pre-releasing a charge of the compressed gas through the exit area to create a pre-released bubble, choking the exit area, and producing a primary pressure pulse by releasing a main charge of compressed gas through the exit area. The primary pressure pulse may be created approximately at the maximum volume of the pre-released bubble. The primary pressure pulse may be created at approximately half of the bubble period of the pre-released gas bubble.
Abstract:
A pressure pulse generator for a downhole drilling tool is provided. The pressure pulse generator includes a stator with an orifice through which a stream of fluid passes, and a rotor intended to rotate opposite the stator to allow the flow of more or less liquid exiting the orifice of the stator. The rotor is equipped with an orifice, and the two orifices present a communicating area for the passage of the stream of fluid. The rotor is capable of passing fluid therethrough. A turbine with blades rotatable in response to fluid flow through the rotor may also be provided. The turbine is operatively connected to the rotor via a drive shaft. The fluid flow through the rotor may be used to rotate the turbine and provide power usable in the downhole tool.