Learning method, information conversion device, and recording medium

    公开(公告)号:US09792561B2

    公开(公告)日:2017-10-17

    申请号:US14812650

    申请日:2015-07-29

    CPC classification number: G06N99/005 G06F17/16 G06N7/06

    Abstract: A learning method includes: counting any one of or some of the number of labels added to each of feature amount vectors included in a learning data set, the number of types of the label, the number of feature amount vectors added with the same label, and the number of data pairs used for learning of a hyperplane, by a processor; first selecting, according to a result of the counting, one or more generation methods from a plurality of previously stored generation methods that generate the data pairs from the learning data set, by the processor; generating, using the selected generation methods, the data pairs from the feature amount vectors included in the learning data set, by the processor; and first learning, using the generated data pairs, the hyperplane that divides a feature amount vector space, by the processor.

    Compact representation of multivariate posterior probability distribution from simulated samples

    公开(公告)号:US09672193B2

    公开(公告)日:2017-06-06

    申请号:US14217707

    申请日:2014-03-18

    CPC classification number: G06F17/18 G06N7/005

    Abstract: Various embodiments are directed to techniques for selecting a subset of a set of simulated samples. A computer-program product including instructions to cause a computing device to order a plurality of UPDFs by UPDF value, wherein the plurality of UPDFs is associated with a chain of draws of a set of simulated samples, wherein each draw comprises multiple parameters and the UPDF values map to parameter values of the parameters; select a subset of the plurality of UPDFs based on the subset of the plurality of UPDFs having UPDF values within a range corresponding to a range of parameter values to include in a subset of the set of simulated samples; and transmit an indication of a draw comprising parameters having parameter values to include in the subset of the set of simulated samples, wherein the indication identifies the draw by associated UPDF. Other embodiments are described and claimed.

    Identification of a propagator-type leader in a social network
    74.
    发明授权
    Identification of a propagator-type leader in a social network 有权
    识别社交网络中的传播者型领导者

    公开(公告)号:US09576326B2

    公开(公告)日:2017-02-21

    申请号:US14298777

    申请日:2014-06-06

    CPC classification number: G06N7/005 G06N99/005 G06Q10/101 G06Q50/01 H04L67/22

    Abstract: Techniques for identification of a propagator-type leader in a social network are described. According to various embodiments, a specific content item posted by a particular actor of a plurality of actors and interactions by other actors of the plurality of actors with the specific content item are identified. A leadership score associated with the particular actor is calculated, the leadership score indicating a propensity of the particular actor to spread information among the plurality of actors of the online social network service. The particular actor is then classified as an information propagator among the plurality of actors of the online social network service, based on the calculated leadership score.

    Abstract translation: 描述了用于在社交网络中识别传播者类型的领导者的技术。 根据各种实施例,识别由多个角色的特定演员发布的特定内容项目以及具有特定内容项目的多个演员的其他演员的交互。 计算与特定演员相关联的领导分数,领导分数表示特定演员在在线社交网络服务的多个角色之间传播信息的倾向。 然后根据所计算的领导分数将特定的演员分类为在线社交网络服务的多个角色中的信息传播者。

    Optimizing a user experience
    75.
    发明授权
    Optimizing a user experience 有权
    优化用户体验

    公开(公告)号:US09519867B1

    公开(公告)日:2016-12-13

    申请号:US13665099

    申请日:2012-10-31

    CPC classification number: G06N7/06 G06F17/30289 G06F17/30867

    Abstract: Systems, methods, and computer-readable media for optimizing a user experience are provided. The method includes optimizing a user experience using clusters, user preferences, or a combination thereof. Clusters may be created based on, for example, user behaviors, or actions, exhibited by a user. User preferences may be established for each cluster in order to further customize the clusters. The clusters may be continuously monitored such that if changes are necessary they may be immediately applied such as a user exhibited different behavior and requiring association with a new cluster. This information, or clustering, may be utilized to predict user satisfaction such that more positive user experiences are encountered and negative user experiences are, to the extent possible, avoided, or at least lessened.

    Abstract translation: 提供了用于优化用户体验的系统,方法和计算机可读介质。 该方法包括使用群集优化用户体验,用户偏好或其组合。 可以基于例如用户展示的用户行为或动作来创建群集。 可以为每个集群建立用户偏好,以进一步定制集群。 可以连续地监视集群,使得如果需要进行改变,则可以立即应用它们,例如用户展示不同的行为并且要求与新的集群关联。 可以利用这种信息或聚类来预测用户的满意度,以便遇到更积极的用户体验,并且在可能的情况下,消极的用户体验被避免或至少减轻。

    Low latency cascade-based detection system
    77.
    发明授权
    Low latency cascade-based detection system 有权
    低延迟级联检测系统

    公开(公告)号:US09443198B1

    公开(公告)日:2016-09-13

    申请号:US14192009

    申请日:2014-02-27

    Abstract: Features are disclosed for detecting an event in input data using a cascade-based detection system. Detection of the event may be triggered at any stage of the cascade, and subsequent stages of the cascade are not reached in such cases. Individual stages of the cascade may be associated with detection thresholds for use in triggering detection of the event. The sequence of stages may be selected based on some observed or desired operational characteristic, such as latency or operational cost. In addition, the cascade may be modified or updated based on data received from client devices. The data may relate to measurements and determinations made during real-world use of the cascade to detect events in input data.

    Abstract translation: 公开了用于使用基于级联的检测系统来检测输入数据中的事件的特征。 可以在级联的任何阶段触发事件的检测,并且在这种情况下不能达到级联的后续阶段。 级联的各个阶段可以与用于触发事件检测的检测阈值相关联。 可以基于一些观察到的或期望的操作特性(例如延迟或操作成本)来选择阶段的顺序。 此外,可以基于从客户端设备接收的数据来修改或更新级联。 该数据可能涉及在实际使用级联期间进行的测量和确定以检测输入数据中的事件。

    Cohort half life forecasting combination from a confident jury
    78.
    发明授权
    Cohort half life forecasting combination from a confident jury 有权
    来自自信陪审团的队列半衰期预测组合

    公开(公告)号:US09342790B1

    公开(公告)日:2016-05-17

    申请号:US14591403

    申请日:2015-01-07

    CPC classification number: G06N7/005 G06N5/043

    Abstract: A forecasting cohort includes a first set of forecasting algorithms and a second set of forecasting algorithms. An initial confidence level and a half-life of each of the first set of forecasting algorithms and the second set of forecasting algorithms are determined. A half-life weight for each of the first set of forecasting algorithms and the second set of forecasting algorithms at a subsequent time are determined, such that the half-life weights decrease an effect of a forecasting algorithm as time elapses. A combined confidence level of the forecasting cohort at the subsequent time is determined and used to adjust resource usage.

    Abstract translation: 预测队列包括第一组预测算法和第二组预测算法。 确定第一组预测算法和第二组预测算法中的每一个的初始置信水平和半衰期。 确定第一组预测算法和随后时间的第二组预测算法的半衰期权重,使得半衰期权重随着时间流逝降低预测算法的影响。 确定随后时间的预测队列的组合置信水平,并用于调整资源使用。

    Sensitivity analysis tool for multi-parameter selection
    79.
    发明授权
    Sensitivity analysis tool for multi-parameter selection 有权
    用于多参数选择的灵敏度分析工具

    公开(公告)号:US09224098B2

    公开(公告)日:2015-12-29

    申请号:US13999071

    申请日:2014-01-10

    Applicant: Optibrium Ltd

    CPC classification number: G06N7/005 G06N5/04 G06Q10/04

    Abstract: Methods, software, products and systems used to support decision making in complex multidimensional problem environments. Methods, software, products and systems to prioritize solutions for selection based upon selection criteria and available data regarding the possible solutions. The methods achieve a robust approach to determine the sensitivity of a selection to a multi-parameter profile of selection criteria and the importance of such criteria.

    Abstract translation: 用于支持复杂多维问题环境中决策的方法,软件,产品和系统。 方法,软件,产品和系统,以根据选择标准和可能的解决方案的可用数据优先选择解决方案。 这些方法实现了一种稳健的方法来确定选择对选择标准的多参数分布的灵敏度以及这些标准的重要性。

    Probabilistic flow management
    80.
    发明授权
    Probabilistic flow management 有权
    概率流量管理

    公开(公告)号:US09191404B2

    公开(公告)日:2015-11-17

    申请号:US13910182

    申请日:2013-06-05

    Inventor: Clinton Grant

    CPC classification number: H04L63/1441 H04L45/38 H04L47/2475

    Abstract: Presented herein are probabilistic flow management techniques in which flow objects are probabilistically evaluated in view of the current contents of a flow table to determine if the flow object should be added to the flow table. An untrusted packet flow may be received at a feature or function of a networking device. The feature initiates addition of an untrusted flow object corresponding to the untrusted packet flow into a flow table. A probabilistic flow management mechanism determines if the number of untrusted flow objects in the flow table is below a predetermined lower limit. If the number of untrusted flow objects exceeds the lower limit and prior to addition of the untrusted flow object into the flow table, the probabilistic flow management mechanism probabilistically determines if the untrusted flow object may be added to the flow table.

    Abstract translation: 这里呈现的是概率流管理技术,其中根据流表的当前内容来概率地评估流对象,以确定流对象是否应该添加到流表中。 可以在网络设备的特征或功能处接收不可信的分组流。 该特征启动了对应于不可信分组流的不可信流对象添加到流表中。 概率流管理机构确定流表中不可信流对象的数量是否低于预定的下限。 如果不可信流对象的数量超过下限,并且在将不可信流对象添加到流表中之前,概率流管理机制概率地确定是否可以将不可信流对象添加到流表中。

Patent Agency Ranking