Abstract:
Techniques disclosed herein describe inferring user interests based on metadata of a plurality of multimedia objects captured by a plurality of users. An analysis tool receives, for each of the users, metadata describing each multimedia object in the plurality of objects associated with that user. Each multimedia object includes one or more attributes imputed to that object based on the metadata. The analysis tool identifies one or more concepts from the one or more attributes. Each concept includes at least a first attribute that co-occurs with a second attribute imputed to a first multimedia object. The analysis tool associates a first one of the plurality of users with at least one of the concepts based on the attributes imputed to multimedia objects associated with the first one of the plurality of users.
Abstract:
A learning method includes: counting any one of or some of the number of labels added to each of feature amount vectors included in a learning data set, the number of types of the label, the number of feature amount vectors added with the same label, and the number of data pairs used for learning of a hyperplane, by a processor; first selecting, according to a result of the counting, one or more generation methods from a plurality of previously stored generation methods that generate the data pairs from the learning data set, by the processor; generating, using the selected generation methods, the data pairs from the feature amount vectors included in the learning data set, by the processor; and first learning, using the generated data pairs, the hyperplane that divides a feature amount vector space, by the processor.
Abstract:
Various embodiments are directed to techniques for selecting a subset of a set of simulated samples. A computer-program product including instructions to cause a computing device to order a plurality of UPDFs by UPDF value, wherein the plurality of UPDFs is associated with a chain of draws of a set of simulated samples, wherein each draw comprises multiple parameters and the UPDF values map to parameter values of the parameters; select a subset of the plurality of UPDFs based on the subset of the plurality of UPDFs having UPDF values within a range corresponding to a range of parameter values to include in a subset of the set of simulated samples; and transmit an indication of a draw comprising parameters having parameter values to include in the subset of the set of simulated samples, wherein the indication identifies the draw by associated UPDF. Other embodiments are described and claimed.
Abstract:
Techniques for identification of a propagator-type leader in a social network are described. According to various embodiments, a specific content item posted by a particular actor of a plurality of actors and interactions by other actors of the plurality of actors with the specific content item are identified. A leadership score associated with the particular actor is calculated, the leadership score indicating a propensity of the particular actor to spread information among the plurality of actors of the online social network service. The particular actor is then classified as an information propagator among the plurality of actors of the online social network service, based on the calculated leadership score.
Abstract:
Systems, methods, and computer-readable media for optimizing a user experience are provided. The method includes optimizing a user experience using clusters, user preferences, or a combination thereof. Clusters may be created based on, for example, user behaviors, or actions, exhibited by a user. User preferences may be established for each cluster in order to further customize the clusters. The clusters may be continuously monitored such that if changes are necessary they may be immediately applied such as a user exhibited different behavior and requiring association with a new cluster. This information, or clustering, may be utilized to predict user satisfaction such that more positive user experiences are encountered and negative user experiences are, to the extent possible, avoided, or at least lessened.
Abstract:
A method, system, and computer-readable storage medium are disclosed for accurately estimating the audience of digital content. A plurality of user interactions occurring on a digital device are received, wherein digital content is displayed on the digital device. Based on the plurality of user interactions, a total number of unique viewers of the digital content on the digital device is estimated.
Abstract:
Features are disclosed for detecting an event in input data using a cascade-based detection system. Detection of the event may be triggered at any stage of the cascade, and subsequent stages of the cascade are not reached in such cases. Individual stages of the cascade may be associated with detection thresholds for use in triggering detection of the event. The sequence of stages may be selected based on some observed or desired operational characteristic, such as latency or operational cost. In addition, the cascade may be modified or updated based on data received from client devices. The data may relate to measurements and determinations made during real-world use of the cascade to detect events in input data.
Abstract:
A forecasting cohort includes a first set of forecasting algorithms and a second set of forecasting algorithms. An initial confidence level and a half-life of each of the first set of forecasting algorithms and the second set of forecasting algorithms are determined. A half-life weight for each of the first set of forecasting algorithms and the second set of forecasting algorithms at a subsequent time are determined, such that the half-life weights decrease an effect of a forecasting algorithm as time elapses. A combined confidence level of the forecasting cohort at the subsequent time is determined and used to adjust resource usage.
Abstract:
Methods, software, products and systems used to support decision making in complex multidimensional problem environments. Methods, software, products and systems to prioritize solutions for selection based upon selection criteria and available data regarding the possible solutions. The methods achieve a robust approach to determine the sensitivity of a selection to a multi-parameter profile of selection criteria and the importance of such criteria.
Abstract:
Presented herein are probabilistic flow management techniques in which flow objects are probabilistically evaluated in view of the current contents of a flow table to determine if the flow object should be added to the flow table. An untrusted packet flow may be received at a feature or function of a networking device. The feature initiates addition of an untrusted flow object corresponding to the untrusted packet flow into a flow table. A probabilistic flow management mechanism determines if the number of untrusted flow objects in the flow table is below a predetermined lower limit. If the number of untrusted flow objects exceeds the lower limit and prior to addition of the untrusted flow object into the flow table, the probabilistic flow management mechanism probabilistically determines if the untrusted flow object may be added to the flow table.