Abstract:
Described embodiments include a system, method, and computer program product. A receiver circuit receives ultrasound echoes from ultrasound-differentiable micro-objects implanted in a vertebrate subject in accordance with an implantable media format (hereafter “implanted micro-objects”). A format decoding circuit identifies the respective implantation region of the implantable media format occupied by each implanted micro-object based on their respective echoes. A micro-object recognition circuit recognizes each implanted micro-object based upon a machine recognizable feature in the respective echoes. A micro-object decoder circuit respectively decodes each recognized micro-object of the two implanted micro-objects into a unit of information pursuant to the identified implantation region of the recognized micro-object and a conversion table. An aggregator circuit collects the decoded units of information into a decoded information set. A computer storage media saves the decoded information set.
Abstract:
Computer-based systems and computer-implemented methods are described for monitoring medication events for an individual. Computer-based systems include systems for monitoring medication events relating to an individual, including: circuitry for analyzing data for an identifier of a first medication event for an individual; circuitry for analyzing the data for at least one attribute of an individual; circuitry for analyzing the data for at least one attribute relating to a medication during the first medication event; circuitry for analyzing the data for at least one feature of visual information and at least one feature of non-visual information relating to the individual during the first medication event; circuitry for analyzing the received data for a time associated with the first medication event; circuitry for determining a compliance likelihood for the first medication event based on the analyses of the received data; and circuitry for indicating the determined compliance likelihood.
Abstract:
A system for delivering optical power over optical conduits includes more than one optical power source and an optical power distribution node configured for selectively delivering optical power to multiple optical power sinks.
Abstract:
A data center for executing a data processing application includes processing units, sub-units or servers. Each of the processing units, sub-units or servers can execute a part or all of the data processing application. The processing units, sub-units or servers are electrical disjoint with respect to data communications, but can communicate with each other over free space optical links.
Abstract:
Systems and methods for wearable injection guides are described, which include: acquiring one or more digital images of a body region of an individual with at least one image capture device; creating a digitally rendered model of a wearable injection guide from the one or more digital images of the body region of the individual; adding one or more digitally rendered fiducials indicative of at least one treatment parameter to the digitally rendered model of the wearable injection guide; and forming the wearable injection guide from the digitally rendered model of the wearable injection guide, the formed wearable injection guide including one or more fiducials corresponding to the one or more digitally rendered fiducials on the digitally rendered model of the wearable injection guide.
Abstract:
Wearable injection guides and manufacture and use thereof are described, which include: a rigid needle-penetrable material having an inner surface and an outer surface, the inner surface having form-fitting contours substantially conforming to a topography of a body region of an individual and the outer surface including one or more fiducials indication of at least one treatment parameter.
Abstract:
Described embodiments include a system, method, and program product. A described system includes a circuit that determines a substantial correspondence between a human-perceivable feature included in a border region segment of a selected medical skin image and a human-perceivable feature included in each other medical skin image of a plurality of medical skin images. A circuit gathers the determined substantial correspondences. A circuit generates data indicative of a border region-overlap status of the selected medical skin image. A circuit adds the data to an omitted-coverage list. A circuit iteratively designates a next medical skin image as the selected digital image, and initiates a processing of each of the iteratively designated next medical skin images. A circuit identifies a possible non-imaged portion of the region of interest. A circuit outputs user-assistance information based on the identified possible non-imaged portion of the skin.
Abstract:
A support system for supporting one or more transmission lines and for mitigating sagging or swinging of the transmission lines may comprise support lines coupled to the transmission lines by adjustable risers. The adjustable risers may be dynamically adjustable in length to compensate for the sagging or swinging of the transmission lines. Various embodiments of the adjustable risers, support lines, and support system are contemplated. These embodiments may include adjustment mechanisms, sensors, shock absorbers, positioning mechanisms, zero gap connections, guy wires, lateral members, and various different arrangements of the elements.
Abstract:
Described embodiments include a system, method, and computer program product. A described system includes a feature-detection circuit that extracts a perceivable feature included in each digital image of a plurality of digital images. Each digital image includes a respective portion of a region of interest of a surface. A feature-matching circuit determines a substantial correspondence between (x) a perceivable feature included in a border region segment of a selected digital image and (y) at least one perceivable feature included in each digital image of the plurality of digital images other than the selected digital image. A data collection circuit gathers the determined substantial correspondences for the perceivable feature included in the border region segment of the selected digital image. A reporting circuit outputs informational data indicative of a possible non-imaged portion of the region of interest of the surface.
Abstract:
Configuration technologies for cost-effectively monitoring indicia of regimen compliance or noncompliance in response to one or more indications of symptoms or actions or other data on data-bearing media or in wireless transmissions, such as implementing techniques for providing or preventing access or otherwise acting on or communicating incremental or definitive indicia of compliance or noncompliance.