Abstract:
A node for self localization, a clustering method using the same, and a localization method are provided. The node, which is located in a specific space so as to constitute a sensor network, includes a location information messaging unit which receives one or more location information messages including information on spatial locations of one or more neighboring nodes in the sensor network from the neighboring nodes in the sensor network; a distance calculator which calculates a first distance to the neighboring node on the basis of the location information included in the received location information messages and calculates a second distance to one or more neighboring nodes on the basis of the received time or intensity of the message on the location information; and a clustering unit which forms clusters of the node and a plurality of neighboring nodes in which the difference between the first and second distances is less than a predetermined threshold.
Abstract:
A sensor node of a wireless sensor network includes a first sensor node module for generating and processing, when it is activated, a first sensing signal to detect occurrence of an event based on the first sensing signal; and a second sensor node module for generating and processing a second sensing signal, when it is activated, to monitor state transition of the event based on the second sensing signal. Further, when the occurrence of the event is detected, the first sensor node module is inactivated and the second sensor node module is activated.
Abstract:
A control apparatus for use in wireless communications includes an antenna unit having antennas, the number of the antennas being equal to a maximum allowable number of connections in a specific frequency band; and a controller for receiving a connection request signal from each terminal attempting to connect to the control apparatus via the antenna unit, and transmitting and receiving a data signal to and from each terminal connected to the control apparatus by using a multiple-input-multiple-output scheme. The controller transmit and receive the data signal to and from each terminal connected to the control apparatus by obtaining a signal value of each antenna based on a predicted channel matrix and the number and types of terminals connected to the control apparatus via the antenna and separating the data signal for each terminal from the signal value according to the multiple-input-multiple-output scheme.
Abstract:
Provided are a coordinator in a wireless sensor network (WSN) which can improve transmission performance and prevent data loss, and a method of operating the coordinator. The method includes: scanning a transmitted beacon and storing information on a channel included in the beacon; when it is determined that a home channel communicating with a parent node is in an inactive mode on the basis of the information on the channel, in synchronization with the activation of another channel of the same hierarchical level as that of the home channel, activating a home channel communicating with a child node and communicating with the child node; and communicating with the child node through an auxiliary channel that has a frequency band different from those of the home channel communicating with the child node and home channels of other nodes and is always in an active mode.
Abstract:
Provided is an antenna for a Radio Frequency Identification (RFID) reader using an electrical loop. It includes an upper metal plate which functions as a radiator; a lower metal plate which is disposed apart from the upper metal plate by a predetermined distance and functions as a radiator; a ground plate disposed apart from the lower metal plate by a predetermined distance; and a feeding probe disposed at the center of the upper and lower metal plates. The antenna can perform radiation parallel to the earth's surface including other directions. Therefore, it is suitable for an RFID reader which recognizes an RFID tag attached in parallel to the earth's surface. The electrical loop antenna can control impedance matching, resonance frequency, antenna gain, and radiation pattern according to the distance between metal plates, size of the metal plates, thickness of a feeding probe, and how the metal plates are arranged.
Abstract:
Provided are a method and an apparatus for avoiding a collision between each of radio frequency identification (RFID) readers. The method and the apparatus divide the RFID readers into first RFID readers and second RFID readers according to a maximum output level, and set first frequency channels for the first RFID readers and second frequency channels for the second RFID readers, set frequency channel disposition information for each of the first RFID readers, generate a channel holding signal in each of the first frequency channels, and if a frequency channel usage request or a frequency channel return request is received from one of the first RFID readers, stop generating or generate the channel holding signal in a frequency channel related to the frequency channel usage or return request. In this manner, the collision between each of the RFID readers is avoided by preventing the second RFID readers from using the first frequency channels for the first RFID readers. Also, the method and the apparatus can efficiently manage frequency channels by controlling a ratio of the number of the first frequency channels to be used by the first RFID readers and the number of the second frequency channels to be used by the second RFID readers, according to usage frequency.
Abstract:
Provided is an apparatus and method for computing the location of a radio beacon by using received signal strength (RSS) and multiple frequencies. The apparatus and method of the present invention computes the location of a radio beacon without limitation in distance by using multiple frequencies and received signal strength to resolve the problem of phase ambiguity. A radio beacon location computing system includes a plurality of base stations configured to receive signals of multiple frequencies transmitted from the radio beacon, and detect and output phase differences and received signal strength; and a location computing server configured to receive the phase differences and the received signal strength outputted from the respective base stations, acquire calculation distances based on the phase differences, remove phase ambiguity from the calculation distances based on the received signal strength, and compute the location of the radio beacon.
Abstract:
Provided is an antenna with high isolation. The high-isolation antenna has transmission ports of a transmission radiating body and reception ports of a reception radiating body highly isolated from each other by using a quadrature hybrid coupler. The antenna includes: a transmission radiating body having two feed points for transmitting signals; a reception radiating body having two feed points for receiving signals; a transmission hybrid coupler which is connected to the two feed points of the transmission radiating body and transmits transmission signals which have a phase difference of 90° with each other; and a reception hybrid coupler which is connected to the two feed points of the reception radiating body and receives reception signals which have a phase difference of 90° with each other. The signals leaking from the two feed points of the transmission radiating body to the two feed points of the reception radiating body are offset.
Abstract:
Provided is a dual polarization antenna realized by using four inverted F-type radiators and a Radio Frequency Identification (RFID) reader employing the dual polarization antenna. The dual polarization antenna includes a ground plate and four inverted F-type radiators set up on the ground plate. Currents of the same phase are fed to the first and second inverted F-type radiators each other. Currents of an inverted phase are fed to the third and fourth inverted F-type radiators each other. The four inverted F-type radiators form an angle of 90° with one another. The first and second inverted F-type radiators radiate electric wave of vertical polarization and the third and fourth inverted F-type radiators radiate electric wave of horizontal polarization. Since the dual polarization antenna has excellent orthogonal and isolation characteristics, the antenna can extend a transmission distance between the reader and the tag and improve a communication quality.
Abstract:
An apparatus and method for managing power of a radio frequency identification (RFID) tag are provided. It is possible for the apparatus for managing the power of the RFID tag to effectively reduce power consumption of the RFID tag by measuring the power strength of a radio frequency (RF) signal received from an RFID reader and adjusting a level of transmission power based on the measured power strength of the signal.