Abstract:
The present subject matter includes a hearing aid housing, a microphone, a wireless communication circuit, hearing aid electronics disposed in the housing, the hearing aid electronics connected to the wireless communication circuit and the microphone, an insertion removal handle connected to the hearing aid housing, the insertion removal handle extending away from the hearing aid housing and an antenna disposed within the insertion removal handle, the antenna connected to the wireless communication circuit, wherein at least a portion of the antenna disposed within the insertion removal handle is coiled.
Abstract:
A battery operated fluorescent lamp is disclosed, which is operable from the battery while the battery is being recharged, comprising a tubular housing configured as a handle grip at one end and a cylindrical lens portion at the other end. The tubular housing lockably connects to a battery pack. The cylindrical 3030 lens portion encloses a miniature fluorescent bulb. The electrical circuitry, enclosed within the handle grip and alternately operable from either 120 VAC or 12 VDC, includes a converter circuit, a battery charging circuit, and a fluorescent lamp ballast circuit. The battery pack is electrically coupled to simultaneously receive charging current from an output of the charging circuit and to deliver DC supply voltage to the fluorescent lamp ballast circuit without the occurrence of a net discharge of the battery pack.
Abstract:
An intrinsically safe energy limited circuit for space-restricted applications includes a fuse and resistor in series with a protected circuit or component wherein the fuse dissipates most of the power when the protected circuit or component is short circuited.
Abstract:
An LED lighting array is disclosed wherein a plurality of light emitting devices disposed in at least first and second columns are mounted on a planar mounting surface to form an emission plane. The emission axes of all the LEDs in a first column are parallel with each other and lie in a first plane. The emission axes of the LEDs in an adjacent, second column are also parallel, but a second plane containing the emission axes of the second column is disposed at a predetermined, non-zero angle with respect to the first plane. The non-zero angle is a function of the LED beam width and the distance to a lighting target. This configuration of the LEDs provides an optimum balance at a predetermined target distance between the size of the area illuminated and the brightness of the illumination of the target. In one aspect of the invention the LED lighting array includes at least first, second and third columns of LEDs. In another aspect of the invention an LED task light includes a transparent tube and an LED lighting array disposed within the tube. An electrical drive circuit associated with the mounting substrate within the tube provides pulsed direct current for driving the LED's.
Abstract:
A portable fluorescent task lamp comprising at least two fluorescent bulbs of any wattage up to forty Watts and of either a non-starting type or a self-starting type; and an electronic ballast circuit for use therewith including an SPST function switch disposed in series with each fluorescent bulb, wherein the fluorescent bulbs may be ignited and sustained in illumination in parallel, simultaneously or individually, as determined by the respective SPST switches.
Abstract:
A fluorescent task lamp includes a housing assembled from first and second shells for supporting a lens body, first and second CFL bulb receptacles and first and second CFL bulbs; and a strain relief for an AC power cord having an integral hub portion with first and second pivot pins that pivot within first and second opposing pivot bushings formed respectively in each first and second shell in opposite sides of an aperture or cavity for receiving the hub portion therein. The pivoting strain relief permits orienting the power cord so that the lamp may be stood upright upon its base or hung from its hook.
Abstract:
The present subject matter includes a hearing aid housing, a microphone, a wireless communication circuit, hearing aid electronics disposed in the housing, the hearing aid electronics connected to the wireless communication circuit and the microphone, an insertion removal handle connected to the hearing aid housing, the insertion removal handle extending away from the hearing aid housing and an antenna disposed within the insertion removal handle, the antenna connected to the wireless communication circuit, wherein at least a portion of the antenna disposed within the insertion removal handle is coiled.
Abstract:
A handheld fluorescent task lamp comprising a housing assembly having a housing and a tubular lens body enclosing compact fluorescent bulbs, an elongated spine configured for slidingly supporting the lens body, and a resilient bulkhead for cushioning the compact fluorescent bulbs in the lens body; an electronic ballast circuit within the housing comprising a power supply, a self-starting electronic driver circuit operable to start and run at least first and second CFL bulbs; a bulb accommodation circuit that enables operation of the electronic ballast circuit with either starter type or non-starter type and regardless whether one or both CFL bulbs are connected to the driver circuit; and an illumination assembly, wherein the CFL bulbs are oriented with respect to each other such that an enhanced forward emission field is provided.
Abstract:
A handheld fluorescent task lamp comprising a housing assembly having a housing and a tubular lens body enclosing compact fluorescent bulbs, an elongated spine configured for slidingly supporting the lens body, and a resilient bulkhead for cushioning the compact fluorescent bulbs in the lens body; an electronic ballast circuit within the housing comprising a power supply, a self-starting electronic driver circuit operable to start and run at least first and second CFL bulbs; a bulb accommodation circuit that enables operation of the electronic ballast circuit with either starter type or non-starter type and regardless whether one or both CFL bulbs are connected to the driver circuit; and an illumination assembly, wherein the CFL bulbs are oriented with respect to each other such that an enhanced forward emission field is provided.