Abstract:
The present invention provides a method for producing a colored resin particle, the method including: preparing an oil phase in which at least a resin and a colorant are dissolved or dispersed in an organic solvent; preparing an aqueous phase containing at least a surfactant in an aqueous medium; dispersing the oil phase in the aqueous phase to prepare a colored particle dispersion liquid so as to form core particles; causing resin fine particles to adhere to surfaces of the core particles by adding at least the resin fine particles to the colored particle dispersion liquid, in which the core particles have been formed; removing the solvent from the colored particle dispersion liquid to obtain colored resin particles, washing the colored resin particles, and drying the colored resin particles, wherein an inorganic base is dissolved in the colored particle dispersion liquid.
Abstract:
A method for producing colored resin particles including: dissolving or dispersing at least binder resin and colorant in organic solvent to prepare oil phase; dissolving resin A and basic compound in aqueous medium to prepare aqueous phase, the resin A having solubility
Abstract:
A developing device including a developing roller facing an image bearing member and a toner layer thickness control member to control an amount of a toner adhered to the developing roller, so that an electrostatic latent image formed on the image bearing member is developed with the toner to form a toner image. The following relationships are satisfied: 0.08×100.3×Dv
Abstract:
A non-magnetic toner including a binder resin including a first resin, a second resin, a third resin; a colorant; and a wax, wherein the first resin is a hybrid resin including an amorphous condensation polymerization unit and a radical polymerization unit in its molecular frame, and the second and third resins are non-hybrid resins including condensation polymerization units, wherein each of the first, second and third resins has a glass transition temperature (Tg) and a softening point (Tm) satisfying the following relationships: Tg of first resin
Abstract:
A developing device including a developer bearing member configured to feed a developer to an image bearing member; a developer supplying member, which is contacted with the developer bearing member at a first nip while opposed thereto and which is configured to supply the developer to the developer bearing member; and a developer layer forming member, which is contacted with the developer bearing member at a second nip located on the downstream side from the first nip relative to the rotation direction of the developer bearing member to form the layer of the developer on the developer bearing member, wherein the developer is a nonmagnetic one component developer, and the distance between the front edge of the second nip and the rear edge of the first nip relative to the rotation direction of the image bearing member is greater than 0.8 mm and less than 2.0 mm.
Abstract:
An image developer using a one-component developer, Including a developing roller visualizing an electrostatic latent image formed on an image bearer with a pulverized toner; and a feed roller feeding the pulverized toner to the developing roller while contacting thereto, wherein the pulverized toner includes a parent toner; a wax; and an external additive comprising an additive having a number-average particle diameter of from 20 to 60 nm and adhering to the surface of the parent toner at an adherence strength of from 50 to 70%, and wherein the following relationships (1) to (3) are satisfied: 4.70
Abstract:
A full-color toner kit including yellow, magenta, and cyan toners each including a benzimidazolone, a naphthol, and a copper phthalocyanine colorants, respectively, and resins (A) and (B) each of which having a polyester skeleton and containing a wax, and a resin (C) having a polyester skeleton and containing no wax. Each of the toners has a softening point of from 125° C. to 135° C. The following relationships are satisfied: Ts(A)
Abstract:
To provide a pulverized toner including: a wax-containing resin; a coloring material; and an external additive, wherein the pulverized toner has an average circularity of 0.890 to 0.930, a particle diameter of 6 μm to 10 μm, and a torque of 1.0 mNm to 2.5 mNm at a vacancy ratio 58% in the pulverized toner as measured by a torque measuring method using a conical rotor, and wherein the pulverized toner is a wax-containing pulverized toner for non-magnetic one component development.