Abstract:
A method for identifying an unfolded non-synchronous blade vibration frequency in blades on a rotating rotor using a plurality of probes spaced from each other about the rotor. A set of data is acquired from the probes during a predetermined number of rotor revolutions and is processed using a Fourier analysis to generate an output representative of frequencies and phase shift angles corresponding to blade vibrations. The phase shift angles are used to identify a subharmonic for a blade vibration frequency to provide an output identifying the vibration frequency. A space dispersion and time dispersion of probes is described to increase the accuracy of the subharmonic determination using the phase shift angles.
Abstract:
A method and apparatus for monitoring blade vibrations in a turbine engine having blade tip target portions associated with blades. An illumination conduit including a plurality of optical fibers conveys light from a light source to a transmission end of the optical fibers where the light is focused to define an axially elongated projected image. The blade tip target portions pass through the projected image and reflect light to a receptor array defined by receptor ends of a plurality of optical fibers forming an imaging conduit for conveying the reflected light to a sensor array. An imaging end of the imaging conduit radiates an image onto the sensor array that is identical to the reflected light image received at the receptor array to track tangential and axial movement of a predetermined point on the target portion.
Abstract:
A method and system for monitoring the operating conditions of an electric generator. The system includes a triad sensor array formed within a predetermined section of a fiber optic conductor. The triad sensor array is formed of a group of sensors including a first sensor including a Bragg grating for producing a first signal representative of strain in a stator bar of the generator, a second sensor including a Bragg grating for producing a second signal representative of temperature in the stator bar, and a third sensor including a Bragg grating for producing a third signal representative of vibration amplitude in the stator bar.
Abstract:
A marker pulse discriminator monitor that enables filtering of partial discharge pulses for monitoring the condition of a generator in a power plant system. The monitor detects partial discharge pulses emanating from the generator and includes a plurality of first modules connected to respective isophase buses adjacent to the generator. Each of the first modules generate a marker pulse in response to a partial discharge pulse. The monitor also includes an analyzer unit connected to the isophase buses adjacent to a step-up transformer. The analyzer unit receives each partial discharge pulse and each marker pulse and determines a differential value corresponding to a difference between a time of arrival of a partial discharge pulse and a time of arrival of a corresponding marker pulse to identify partial discharge pulses originating at the generator and to identify the isophase bus associated with the corresponding partial discharge pulse.
Abstract:
A method for identifying an unfolded non-synchronous blade vibration frequency in blades on a rotating rotor using a plurality of probes spaced from each other about the rotor. A set of data is acquired from the probes during a predetermined number of rotor revolutions and is processed using a Fourier analysis to generate an output representative of frequencies and phase shift angles corresponding to blade vibrations. The phase shift angles are used to identify a subharmonic for a blade vibration frequency to provide an output identifying the vibration frequency. A space dispersion and time dispersion of probes is described to increase the accuracy of the subharmonic determination using the phase shift angles.
Abstract:
An optical inspection system is for visually inspecting the blades of a turbine at turning gear operation. The inspection system includes an imager for capturing images of the blades, an optical passage coupled to the imager and structured to provide maximum viewing area of the blades through an inspection port in the turbine and an illuminating assembly adapted to illuminate the blades while the imager captures images thereof. A method wherein the captured blade images are inspected for blade defects, is also disclosed.
Abstract:
A temperature monitor for monitoring plural locations on an electrical bus structure. The temperature monitor includes an infrared sensor for receiving infrared energy from a plurality of discrete predetermined locations on the bus structure, a first member defining a stationary first mask, a second member defining a rotating second mask, and a drive member driving the second member in rotation relative to the first member. Rotation of the second member relative to the first member defines an aperture translated across the first mask member to provide a moving line-of-sight that extends from the sensor and that scans to each of the discrete predetermined locations on the bus structure.
Abstract:
A method for predicting a blade structure failure within a coupled blade structure including a plurality of blades supported for rotation on a rotor and a shroud structure coupling the blades. The method includes the steps of determining displacements of a plurality of predetermined circumferential locations on the shroud structure during rotation of the blade row, where the displacements are provided as a function of time relative to the periodic rotation of the shroud structure for time intervals that are integer multiples of rotor rotation. A signal characteristic related to vibrational mode and a nodal diameter of the shroud structure is derived based on the displacements of the circumferential locations on the shroud structure.
Abstract:
A generator monitoring system and method includes a plurality of sensors (12) disposed within a generator enclosure (18) to sense health conditions of a generator (10) housed within the enclosure. The sensors are interconnected to provide a single communication path (14) for allowing communication with the plurality of sensors. A monitoring device (16) outside the generator enclosure receives health condition information from each of the plurality of sensors via the single communication path. A sensor may be disposed within the generator enclosure to detect particulates emitted from a monitored portion (e.g., 52) of the generator housed within the enclosure. A sensor may be disposed proximate a bus bar connection (130) of the generator to sense a health condition of the bus bar connection and generate corresponding health condition information provided to the monitoring device.
Abstract:
The claimed invention provides a blade vibration measuring system comprising a blade, a transmitter, a target with parallel edges located on the blade shroud and a receiver. The present invention also provides a blade adapted for measuring torsional blade vibration. Furthermore, the claimed invention provides a method for monitoring torsional blade vibration.