Abstract:
A generator monitoring system and method includes a plurality of sensors (12) disposed within a generator enclosure (18) to sense health conditions of a generator (10) housed within the enclosure. The sensors are interconnected to provide a single communication path (14) for allowing communication with the plurality of sensors. A monitoring device (16) outside the generator enclosure receives health condition information from each of the plurality of sensors via the single communication path. A sensor may be disposed within the generator enclosure to detect particulates emitted from a monitored portion (e.g., 52) of the generator housed within the enclosure. A sensor may be disposed proximate a bus bar connection (130) of the generator to sense a health condition of the bus bar connection and generate corresponding health condition information provided to the monitoring device.
Abstract:
A temperature monitor for monitoring plural locations on an electrical bus structure. The temperature monitor includes an infrared sensor for receiving infrared energy from a plurality of discrete predetermined locations on the bus structure, a first member defining a stationary first mask, a second member defining a rotating second mask, and a drive member driving the second member in rotation relative to the first member. Rotation of the second member relative to the first member defines an aperture translated across the first mask member to provide a moving line-of-sight that extends from the sensor and that scans to each of the discrete predetermined locations on the bus structure.
Abstract:
A generator monitoring system and method includes a plurality of sensors (12) disposed within a generator enclosure (18) to sense health conditions of a generator (10) housed within the enclosure. The sensors are interconnected to provide a single communication path (14) for allowing communication with the plurality of sensors. A monitoring device (16) outside the generator enclosure receives health condition information from each of the plurality of sensors via the single communication path. A sensor may be disposed within the generator enclosure to detect particulates emitted from a monitored portion (e.g., 52) of the generator housed within the enclosure. A sensor may be disposed proximate a bus bar connection (130) of the generator to sense a health condition of the bus bar connection and generate corresponding health condition information provided to the monitoring device.
Abstract:
A generator monitoring system and method includes a plurality of sensors (12) disposed within a generator enclosure (18) to sense health conditions of a generator (10) housed within the enclosure. The sensors are interconnected to provide a single communication path (14) for allowing communication with the plurality of sensors. A monitoring device (16) outside the generator enclosure receives health condition information from each of the plurality of sensors via the single communication path. A sensor may be disposed within the generator enclosure to detect particulates emitted from a monitored portion (e.g., 52) of the generator housed within the enclosure. A sensor may be disposed proximate a bus bar connection (130) of the generator to sense a health condition of the bus bar connection and generate corresponding health condition information provided to the monitoring device.
Abstract:
A temperature monitor for monitoring plural locations on an electrical bus structure. The temperature monitor includes an infrared sensor for receiving infrared energy from a plurality of discrete predetermined locations on the bus structure, a first member defining a stationary first mask, a second member defining a rotating second mask, and a drive member driving the second member in rotation relative to the first member. Rotation of the second member relative to the first member defines an aperture translated across the first mask member to provide a moving line-of-sight that extends from the sensor and that scans to each of the discrete predetermined locations on the bus structure.
Abstract:
A generator monitoring system and method includes a plurality of sensors (12) disposed within a generator enclosure (18) to sense health conditions of a generator (10) housed within the enclosure. The sensors are interconnected to provide a single communication path (14) for allowing communication with the plurality of sensors. A monitoring device (16) outside the generator enclosure receives health condition information from each of the plurality of sensors via the single communication path. A sensor may be disposed within the generator enclosure to detect particulates emitted from a monitored portion (e.g., 52) of the generator housed within the enclosure. A sensor may be disposed proximate a bus bar connection (130) of the generator to sense a health condition of the bus bar connection and generate corresponding health condition information provided to the monitoring device.
Abstract:
A system (90) for measuring the gap (16) between a rotating blade (14) and a stationary component (12) of a turbo-machine, including an eddy current coil (30) and an eddy current tester (91). The eddy current tester may excite the coil in a pulsed eddy current testing mode. The coil is positioned in a stationary portion (12) of a turbo-machine traversed by a rotating blade and the eddy current tester is coupled to the eddy current coil to provide an indication responsive to a distance between the blade and the stationary portion as the blade traverses the position. The coil may be mounted in a frangible ceramic pill (70) movably disposed in a housing (74). The coil is positioned near the turbine blade, the coil is excited with a voltage step function (120), and the response (122) of the coil to the step function is detected and processed to determine the proximity of the blade.
Abstract:
A digital network quality control system and method utilizing feedback controlled flexible waveform shape for the carrier signal is provided. The system and method provides self-analysis and feedback to a variable waveform to increase network reliability and speed by modifying the shape of the waveform itself based on a self analysis of the waveform.
Abstract:
A detector or a modulator for converting between optical and radio frequency signals comprising an optical guide (11 to 14) for propagating two optical signal components having frequencies that differ by an amount corresponding to a radio frequency and a microstrip radio signal guide (15, 16) for propagating a radio signal at the radio frequency, the microstrip radio signal guide being in travelling-wave coupling with an interaction one (14) of the optical guide comprising material in which interaction between the optical signal components and the radio signal occur. The microstrip radio signal guide element (15, 16) comprises an electrically conductive strip (15) juxtaposed with and extending along the interaction zone (14) on one side thereof and an electrically conductive ground plane (16) juxtaposed with and extending along the interaction zone (14) on an opposite side thereof. Transition radio signal guide elements (20,21) in the form of Vivaldi antennas extending transversely to the microstrip (15) connect the microstrip radio signal guide element (15,16) with a rectangular section wave-guide (18) and a matched load. Each of the transition radio signal guide elements (20, 21) comprises an opening of progressively varying width formed in the electrically conductive ground plane of the microstrip guide (16). Radio frequency signal resonators (24 to 27) extend the ends of the microstrip (15) and the small ends of the Vivaldi antennas.
Abstract:
A receiver (103) for receiving an Ultra Wide Band (UWB) signal comprises a receiver front end (105) coupled to symbol point correlators (107). The symbol point correlators (107) comprise a first plurality of correlators which generates correlated signal values around a first symbol decision point of a first symbol by correlating the received UWB signal with a local replica. The first plurality of correlators are time offset with respect to each other to generate first time offset correlated signal values. The time offsets are typically significantly less than the timing jitter of transmit and receive oscillators. The symbol point correlators (107) are coupled to a joint estimator (109) which determines a symbol value of the first symbol in response to the first time offset correlated signal values by joint detection of the symbol value and a time offset of the UWB signal. The invention may effectively reduce time jitter noise to a value determined by the relative time offset between the correlators.