Abstract:
A laser inducted thermal imaging method includes preparing a donor element and a substrate; facing a transfer layer of the donor element to the substrate and then patterning the transfer layer onto the substrate; and annealing the patterned substrate.
Abstract:
Provided are a donor substrate for laser induced thermal imaging (LITI) and method of fabricating an organic light emitting display (OLED) using the same donor substrate. A conductive frame is disposed on an outer portion of the donor substrate and connected to an anti-static layer. The conductive frame of the donor substrate is connected to a grounded stage. In this structure, while an organic layer is formed using an LITI process, the generation of static electricity may be controlled.
Abstract:
A lamination apparatus and a laser-induced thermal imaging method using the same are provided. The lamination apparatus comprising: a chuck for fixing first and second substrates; and having at least one vacuum hole located therein and exposed outside of the first substrate therein.
Abstract:
A method of fabricating an OLED is provided. The method includes providing a substrate, in which a pixel electrode is formed. In addition, the method includes laminating a donor substrate attached to a frame on an entire surface of the substrate, and irradiating a laser to a predetermined region of the donor substrate to form an organic layer pattern on the pixel electrode. The present invention provides a method of fabricating the OLED capable of suppressing generation of contaminants such as particles and so on, and preventing the donor substrate from sagging or bending, as well as improving transfer efficiency since the donor substrate and the substrate are readily adhered to each other to maintain vacuum state.
Abstract:
An organic EL display device includes first and second electrodes with a light-emitting layer interposed therebetween and an organic soluble derivative layer arranged between the first electrode and the light-emitting layer, wherein the organic soluble derivative layer prevents impurities from being diffused to the light-emitting layer.
Abstract:
An organic EL device which includes a first electrode, a hole transport layer, a light-emitting layer, and the second electrode, wherein the light-emitting layer includes a mixed light-emitting film of a host substance, which is capable of transferring an energy to another light-emitting polymer by absorbing the energy, and a phosphorescent dopant which is capable of emitting light using a triplet state after absorbing the energy received. Accordingly, the light-emitting layer can be patterned, and a color purity and light-emitting characteristics of a full color organic polymer EL device, produced through a laser induced thermal imaging operating, can be improved.
Abstract:
The present invention relates to a flat panel display, and more particularly, to a method of fabricating an organic light emitting display device so as to improve device characteristics by patterning a plurality of organic layers using a heat transfer method to optimize thicknesses according to R, G and B pixels. The method includes: forming lower electrodes of R, G and B pixels on an insulating substrate; forming an organic layer on the insulating substrate; and forming an upper electrode on the organic layer. Formation of the organic layer includes forming a hole injection layer and a hole transport layer of the R, G and B pixels on the entire surface of the substrate as a common layer. The R and G emission layers are patterned by a heat transfer method using a heat transfer device having a transfer layer such that an organic layer is patterned to a thickness obtained by subtracting a thickness of the B emission layer from the thicknesses of the R and G emission layers required in R and G colors.
Abstract:
A donor substrate for laser transfer comprises: a base film; a light-to-heat conversion layer formed on the base film; and a transfer layer formed of an organic material on the light-to-heat conversion layer. The transfer layer contains a thermosetting electroluminescent material, and an organic electroluminescence display device is manufactured using the same. Thus, R, G and B emission layers are simply formed with a fine pattern by a thermal curing process after laser transfer. As a result, the emission layers are not damaged, and the manufacturing cost of a full-color organic electroluminescence display device is reduced due to employment of a simplified mask process. The donor substrate is advantageous to use in the manufacture of a large-sized organic electroluminescence display device.
Abstract:
The invention is directed to an organic electroluminescent (EL) display device having an improved light extracting efficiency due to a photonic crystal layer formed proximate one side of a stack. Among other elements, the stack may include a first electrode formed on a substrate, an organic light emitting layer formed above the first electrode, and a second electrode formed above the organic light emitting layer. Additionally, the photonic crystal layer may be configured to correspond to a wavelength of colored light. An organic EL display device having an improved light extracting efficiency may be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the stack.
Abstract:
A light-emitting polymer composition for a light-emitting layer in an organic EL display device includes at least first and second light-emitting polymers having different interfacial characteristics which lower a cohesion between elements of the first and second light-emitting polymers.