摘要:
An organic EL device which includes a first electrode, a hole transport layer, a light-emitting layer, and the second electrode, wherein the light-emitting layer includes a mixed light-emitting film of a host substance, which is capable of transferring an energy to another light-emitting polymer by absorbing the energy, and a phosphorescent dopant which is capable of emitting light using a triplet state after absorbing the energy received. Accordingly, the light-emitting layer can be patterned, and a color purity and light-emitting characteristics of a full color organic polymer EL device, produced through a laser induced thermal imaging operating, can be improved.
摘要:
A white light emitting organic electroluminescent device and organic electroluminescent display having the same are provided. The organic electroluminescent device includes a first electrode, a second electrode, and an emission layer interposed between the first and second electrodes and having a fluorescence layer and a phosphorescence layer. Thereby, it is possible to obtain the white light emitting organic electroluminescent device having luminance yield improved.
摘要:
An organic EL device which includes a first electrode, a hole transport layer, a light-emitting layer, and the second electrode, wherein the light-emitting layer includes a mixed light-emitting film of a host substance, which is capable of transferring an energy to another light-emitting polymer by absorbing the energy, and a phosphorescent dopant which is capable of emitting light using a triplet state after absorbing the energy received. Accordingly, the light-emitting layer can be patterned, and a color purity and light-emitting characteristics of a full color organic polymer EL device, produced through a laser induced thermal imaging operating, can be improved.
摘要:
The present invention is directed to a full color organic electroluminescent device which comprises a substrate; a first electrode formed on the substrate; an organic emitting layer formed on the first electrode, and having a red-emitting layer, a green-emitting layer and a blue-emitting layer, respectively patterned in a red pixel region, a green pixel region and a blue pixel region, and having the red and green-emitting layer consisting of a phosphorescent material and the blue-emitting layer consisting of a fluorescent material; a hole blocking layer formed on the organic emitting layer as a common layer; and a second electrode formed on the hole blocking layer, so that the full color organic electroluminescent device having enhanced lifetime and luminous efficiency characteristics can be provided.
摘要:
The present invention is directed to a full color organic electroluminescent device which comprises a substrate; a first electrode formed on the substrate; an organic emitting layer formed on the first electrode, and having a red-emitting layer, a green-emitting layer and a blue-emitting layer, respectively patterned in a red pixel region, a green pixel region and a blue pixel region, and having the red and green-emitting layer consisting of a phosphorescent material and the blue-emitting layer consisting of a fluorescent material; a hole blocking layer formed on the organic emitting layer as a common layer; and a second electrode formed on the hole blocking layer, so that the full color organic electroluminescent device having enhanced lifetime and luminous efficiency characteristics can be provided.
摘要:
A donor substrate for laser transfer comprises: a base film; a light-to-heat conversion layer formed on the base film; and a transfer layer formed of an organic material on the light-to-heat conversion layer. The transfer layer contains a thermosetting electroluminescent material, and an organic electroluminescence display device is manufactured using the same. Thus, R, G and B emission layers are simply formed with a fine pattern by a thermal curing process after laser transfer. As a result, the emission layers are not damaged, and the manufacturing cost of a full-color organic electroluminescence display device is reduced due to employment of a simplified mask process. The donor substrate is advantageous to use in the manufacture of a large-sized organic electroluminescence display device.
摘要:
An organic electroluminescent display (OLED) device having an anode electrode covered with a solution-coated ultra-thin polymer film (reforming layer) is disclosed. In one embodiment, an OLED device includes a substrate having a first anode electrode formed thereon. The first anode electrode is covered with an ultra-thin polymer film (reforming layer). An organic emission layer is formed over an upper surface of the reforming layer, and a second cathode electrode is formed over the organic emission layer. The reforming layer is made of a material selected from a general polymer that is a soluble polymer, a heat resistant polymer, and a fluorine-based polymer having one or more functional groups. The solution coating methods which may be used to apply the reforming layer include a spin coating method, a doctor blade method, a dip coating method, a roll coating method, a spray coating method, and an ink jet method.
摘要:
The present invention relates to a full color organic electroluminescent device and a method for fabricating the same and provides a full color organic electroluminescent device. The invention reduces misalignment errors caused by fine patterning of the emitting layer by reducing the steps of the fine patterning process. In particular, the blue emitting layer functions as a hole inhibition layer which results in superior color purity and improved stability for the color organic electroluminescent device. The use of such a blue emitting layer also reduces the manufacturing steps. The device comprises a substrate; a first electrode pattern formed on the substrate; a red emitting layer formed by patterning a red emitting material on a red pixel region of the first electrode pattern and a green emitting layer formed by patterning a green emitting material on a green pixel region of the first electrode pattern. A blue emitting layer is applied over the entire substrate, over the upper parts of the red and green emitting layers and a second electrode is formed on an upper part of the blue emitting layer.
摘要:
An organic electroluminescent display (OLED) device having an anode electrode covered with a solution-coated ultra-thin polymer film (reforming layer) is disclosed. In one embodiment, an OLED device includes a substrate having a first anode electrode formed thereon. The first anode electrode is covered with an ultra-thin polymer film (reforming layer). An organic emission layer is formed over an upper surface of the reforming layer, and a second cathode electrode is formed over the organic emission layer. The reforming layer is made of a material selected from a general polymer that is a soluble polymer, a heat resistant polymer, and a fluorine-based polymer having one or more functional groups. The solution coating methods which may be used to apply the reforming layer include a spin coating method, a doctor blade method, a dip coating method, a roll coating method, a spray coating method, and an ink jet method.
摘要:
An organic electroluminescence display device made by a laser induced thermal imaging process has a substrate having first and second electrode layers, and an organic layer having red, green, and blue light-emitting layers between the electrode layers. Thermosetting light-emitting materials are used to form the red, green, and blue light-emitting layers, and a laser is then selectively irradiated onto a light-to-heat conversion layer formed on the substrate to deliver heat energy converted from light energy through the light-to-heat conversion layer to the thermosetting light-emitting materials so that curing is progressed to form patterned light-emitting layers. In accordance with the fabrication method of the present invention, the light-emitting materials may be patterned using a laser, thereby fabricating a large scaled organic electroluminescence display device and simplifying the process by not using a mask when the light-emitting layers are formed.