Abstract:
A fabric construction utilizing a tying yarn knitting arrangement wherein a portion of the tying yarns are threaded to engage needles so as to form two stitches with one on either side of the inlay warp yarn at rows of stitch formation. The neighboring stitches resist yarn separation and resultant combing while also blocking the commencement and propagation of de-knitting when a tying yarn is broken thereby enhancing seam strength character.
Abstract:
A fabric for use in an air bag is provided. The fabric of the invention is produced by mechanically compressing a preliminary fabric constructed substantially of synthetic yarn such that the packed volume per unit area of the compressed fabric is less than the packed volume per unit area of the preliminary fabric. Air permeability is not adversely affected.
Abstract:
Airbag cushions manufactured from polyester yarn having certain levels of intrinsic viscosity (IV) and certain specific carboxyl end group (“CEG”) levels perform unexpectedly well in high temperature and high humidity environments for airbag cushion applications. This specification identifies certain polyester yarns and characteristics of such polyester yams that are necessary to achieve unexpectedly good performance in such high humidity and high temperature applications. A polymeric polyester yarn for airbags, said yarn having a high degree of tenacity even after a long period of exposure to high temperature and high humidity conditions is disclosed. In one aspect of the invention, a polyester yarn having CEG of less than about 60 equivalents/106 gram, and more preferably less than about 30 equivalents/106 grams, is particularly useful. In another embodiment, a polyester yarn having an IV value of at least about 0.6 performs exhibits superior properties.
Abstract:
An inflatable side protection airbag having a first panel and a second panel, in which the first panel and second panel each have an anterior portion and a posterior portion. The first panel may comprise the outboard portion of the inflated structure. The second panel may be formed in separate fabric pieces which are sewn together, reducing the overall amount of fabric required to construct the second panel. A bridging portion may be provided in the second panel. The bridging portion may be provided adjacent a void area which is positioned at least partially between the anterior portion and the posterior portion of the second panel. An anterior portion of the first panel is mated to the anterior portion of the second panel in forming a front pillow. A posterior portion of the first panel is mated to the posterior portion of the second panel to form a back pillow. The ratio of the amount of fabric actually employed in the final product to the amount of fabric blank utilized for the construction may be as much as eighty or even ninety percent or greater for some designs.
Abstract:
An airbag having low gas permeability characteristics. The airbag is formed from two separate layers of material, an inner layer having low air permeability and an outer strength layer enclosing the inner layer, where the layers are only attached together along seam lines. The inner layer is made from a film material, preferably urethane. The outer layer is formed from a fabric.
Abstract:
The present invention relates to an airbag cushion which exhibits a low amount of seam usage (in order to attach at least two fabric panels or portions of a panel together) in correlation to an overall high amount of available inflation airspace within the cushion itself. These correlated elements are now combined for the first time in what is defined as an effective seam usage index (being the quotient of the length of overall seams on the cushions and the available inflation airspace volume). The inventive cushion must have at least one substantially straight seam and must possess an effective seam usage factor of less than about 0.11. A cushion exhibiting such a low seam usage factor and also comprising an integrated looped pocket for the disposition of an inflator can is also provided as well as an overall vehicle restraint system comprising the inventive airbag cushion.
Abstract:
An airbag having low gas permeability characteristics. The airbag is formed from two separate layers of material, an inner layer having low air permeability and an outer strength layer enclosing the inner layer, where the layers are only attached together along seam lines. The inner layer is made from a film material, preferably urethane. The outer layer is formed from a fabric.
Abstract:
An inflatable restraint cushion for use in transportation passive restraint systems is provided. The inflatable restraint cushion according to the invention is of a foldable construction having two panels with generally straight line geometric profiles. The first panel is of generally a pyramidal configuration while the second panel is of an elongated rectangular configuration joined to and extending from the apex of the first panel. Mouth forming slits are cut into the base of the first panel, thereby dividing the base into right and left segments. The right and left segments of the base are folded towards one another and are seamed together. The second panel is thereafter folded in loop fashion towards the first panel and a single seam is used to join the mating edges of the first and second panels.