Abstract:
A coating film (90) is formed by causing vapor deposition particles (91) discharged from a vapor deposition source opening (61) of a vapor deposition source (60) to pass through a space between a plurality of control plates (81) of a control plate unit (80) and a mask opening (71) of a vapor deposition mask in this order and adhere to a substrate, while the substrate (10) is moved relative to the vapor deposition mask (70) in a state in which the substrate (10) and the vapor deposition mask (70) are spaced apart at a fixed interval. A difference in the amount of thermal expansion between the vapor deposition source and the control plate unit is detected and corrected. It is thereby possible to form, at a desired position on a large-sized substrate, the coating film in which edge blur and variations in the edge blur are suppressed.
Abstract:
A coating film (90) is formed by causing vapor deposition particles (91) to pass through a mask opening (71) of a vapor deposition mask and adhere to a substrate, the vapor deposition particles (91) being discharged from a vapor deposition source opening (61) of a vapor deposition source (60) while the substrate (10) is moved relative to the vapor deposition mask (70) in a state in which the substrate (10) and the vapor deposition mask (70) are spaced apart at a fixed interval. When a direction that is orthogonal to a normal line direction of the substrate and is orthogonal to a relative movement direction of the substrate is defined as a first direction, and the normal line direction of the substrate is defined as a second direction, a plurality of control plate columns are disposed in the first direction between the vapor deposition source opening and the vapor deposition mask, each control plate column including a plurality of control plates (80a and 80b) arranged along the second direction. With this configuration, a coating film in which blur at both edges of the coating film and variations in the blur are suppressed can be formed on a large-sized substrate.
Abstract:
An optical information recording/reproducing apparatus for an optical disc using a light beam having a wavelength of λ including: an objective lens that converges the light beam onto a recording surface of the optical disc and satisfies a condition: 0.48
Abstract:
A vapor deposition source (60), a plurality of limiting plates (81) and a vapor deposition mask (70) are disposed in this order. A substrate spaced apart from the vapor deposition mask at a fixed interval is moved relative to the vapor deposition mask. Vapor deposition particles (91) discharged from vapor deposition source openings (61) of the vapor deposition source pass through between neighboring limiting plates, pass through mask openings (71) formed in the vapor deposition mask, and adhere to the substrate, whereby coating films (90) are formed. The limiting plates limit the incidence angle of the vapor deposition particles that enter the mask openings, as viewed in the relative movement direction of the substrate. In this way, an organic EL element can be formed on a large-sized substrate without increasing the pixel pitch or reducing the aperture ratio.
Abstract:
An objective optical system for an optical information recording/reproducing apparatus, at least one surface of the objective optical system being configured to be a phase shift surface having a phase shift structure, wherein: the phase shift surface has a first area contributing to converging first, second and third light beams onto recording surfaces of first, second and third optical discs, respectively; in the first area, the phase shift surface has at least two types of phase shift structures including a first phase shift structure having first steps and a second phase shift structure having second steps; the phase shift surface has a plurality of combinations of annular zones which satisfy a condition: 0.95
Abstract:
An ejector comprises a body, a nozzle, a needle, a diffuser which draws in a second fluid using negative pressure caused by ejection of a first fluid from the nozzle and mixes the first and second fluids together, first and second diaphragms which allows the nozzle to shift in an axial direction with respect to the needle, and a first fluid chamber which is supplied with the first fluid. A valve in which a valve body contacts and separates from a valve seat according to the shifting action of the nozzle is formed by providing either the nozzle or the needle with the valve body and providing the other with the valve seat in the first fluid chamber. A back pressure chamber connecting to the first fluid chamber via the valve is provided between a trunk portion of the nozzle and a basal part of the needle.
Abstract:
An objective lens for an optical information recording/reproducing optical system for an optical disc letting a laser beam impinge on a recording layer of the optical disc, and wherein a center wavelength λ (unit: nm) of the laser beam is in a range defined by a condition: 390≦λ≦420, a base material of the objective lens is made of resin, the resin has a glass transition temperature Tg and light transmissivity T (unit: %) per a path length of 3 mm at a wavelength of 406 nm defined by conditions: Tg≧115° C., 85≦T≦90, same antireflection films or different types of antireflection films are respectively formed on optical surfaces of the objective lens, and each of the antireflection films formed on the objective lens has a thickness of 100 nm or more in a vicinity of an optical axis of the objective lens.
Abstract:
There is provided an objective lens for information recording/reproducing for three types of optical discs, which includes a first area contributing to converging a third light beam onto a record surface of a third optical disc. The first area includes a phase shift structure having refractive surface zones concentrically formed about a predetermined axis. The phase shift structure includes first and second step groups. The first step group is configured such that an optical path length difference ΔOPD1 (nm) given by each step of the first step group to a first light beam satisfies a condition: 2N1+1.10
Abstract:
It is an object of the present invention to provide a method of evaluating whether or not a subject has a predisposition to obesity or an obesity-related condition or disease, a kit for conducting the method, an anti-obesity drug having an effect of preventing or treating obesity or an obesity-related condition or disease, a method of screening the anti-obesity drug, a non-human animal having a deficiency in the gene associated with obesity, and an adipose tissue or adipocyte of the animal.The method of evaluating a predisposition to obesity of the present invention is a method of evaluating whether or not a subject has a predisposition to obesity or an obesity-related condition or disease. The method includes the step of detecting a copy number variation (CNV) in intron 1 of SLC25A24 gene or a gene polymorphism having a linkage disequilibrium relationship with the CNV in a sample containing a human gene of the subject. If the CNV in intron 1 of the SLC25A24 gene is 0, the subject may be evaluated to have a predisposition to obesity or an obesity-related condition or disease.
Abstract:
A double-stranded nucleic acid molecule for suppressing the expression of at least one of COX7RP and Efp genes which includes (a) a sense strand which includes a nucleotide sequence corresponding to a target sequence indicated by any one of SEQ ID Nos.: 1 to 38 and (b) an antisense strand which includes a nucleotide sequence complementary to that of the sense strand specified in (a); a cancer cell proliferation inhibitor with the double-stranded nucleic acid molecule and against at least one of uterine, breast and bladder cancer cells; and a pharmaceutical agent with the cancer cell proliferation inhibitor and against at least one of uterine, breast and bladder cancers.
Abstract translation:用于抑制COX7RP和Efp基因中的至少一种表达的双链核酸分子,其包括(a)有义链,其包含对应于由SEQ ID NO:1至 38和(b)反义链,其包含与(a)中规定的有义链的核苷酸序列互补的核苷酸序列; 具有双链核酸分子和针对子宫,乳腺和膀胱癌细胞中的至少一个的癌细胞增殖抑制剂; 以及具有癌细胞增殖抑制剂和针对子宫,乳腺和膀胱癌中的至少一种的药剂。