Abstract:
A linear actuator includes a housing, motors, actuator members, clutch members, a base, a clutch driver, and a pulling handle. The motors are disposed in the housing. The actuator members are respectively disposed in the housing and corresponding to a respective one of the motors. Each clutch member is connected between a respective one of the motors and a respective corresponding one of the actuator members. The base is disposed on an outer surface of the housing, a flange is disposed on an outer surface of the base, and a guiding slot is formed on the base. The clutch driver is in the base and connected to each of the clutch members. A cam contacting against the flange is formed on an end of the pulling handle, and a shaft is inserted through the end. The shaft is inserted through the guiding slot to connect the clutch driver.
Abstract:
A portable device for controlling an external electrical adjustable apparatus is provided. The portable device comprises a case, a signal transmitter connected to the electrical adjustable apparatus, a tilt sensor sensing a tilted angle, a memory storing a threshold angle and a processor. The processor determines that the electrical adjustable apparatus has collision when receiving a controlling signal used to control the electrical adjustable apparatus and the tilted angle is not less than the threshold angle, and sends a stopping signal to the electrical adjustable apparatus via the signal transmitter for making the electrical adjustable apparatus stop raising/lowering when determining that the electrical adjustable apparatus has collision. This present disclosed example can effectively prevent article placing on the carrying structure from falling and prevent the electrical adjustable apparatus or the obstacle from being damaged by continual stretching/shortening after collision.
Abstract:
A motor, which has a braking function and is used in a linear actuator includes a main body, a rotation shaft, a braking means and a stopping means. The rotation shaft penetrates the center of the main body. The braking means includes a braking ring and a helical ring. The braking ring includes a plurality of curved plates. The helical ring surrounds outer edges of the curved plates. Each curved plate is put on the outer periphery of the rotation shaft. The stopping means is disposed between the main body and the braking means for restricting the rotation of any of the curved plates. By this arrangement, a better braking and decelerating function can be achieved.
Abstract:
A linear actuator (1) includes an actuator mechanism (10), a telescopic mechanism (20) and a quick release mechanism (30, 30a). The quick release mechanism (30, 30a) includes a transferring set (31, 31a) connected with the telescopic tube (20), a supporting set (32, 32a) and a braking worm gear (33, 33a) sleeved on the transferring set (31, 31a), a braking worm shaft (34, 34a) connected with the supporting set (32, 32a) and selectively braking the braking worm gear (33, 33a). An elastic pressing assembly (35, 35a) presses elastically on the worm shaft (34, 34a), and the elastic pressing assembly exerted by an external force can adjust the pressing force pressed on the braking worm shaft (34, 34a).