Abstract:
A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises provides, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs. These first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV. During object illumination and imaging operations, the relative power ratio (VIS/IR) of these fields of visible illumination and invisible illumination are controlled as one or more digital images of said illuminated object are formed and detected, captured and buffered, and ultimately processed so as to read one or more 1D and/or 2D code symbols graphically represented in the digital images. During object illumination and imaging operations operation, the relative power ratio (VIS/IR) is adaptively controlled to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality.
Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging subsystem for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each coplanar illumination and imaging subsystem includes a local object motion detection subsystem for detecting the motion of objects moving through the 3D imaging volume, and a local control subsystem for controlling the state of operations within each coplanar illumination and imaging station during system operation. Each coplanar illumination and imaging subsystem has an object detection state and a code symbol reading state of operation, and includes one or more planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV) that is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. When a local object motion detection subsystem automatically detects the motion of an object passing through at least a portion of the 3D imaging volume, a global control subsystem cooperates with the local control subsystems to manage the state of operation of each coplanar illumination and imaging subsystem, e.g. by driving one or more of coplanar illumination and imaging subsystems into the code symbol reading state of operation.
Abstract:
An automatic digital image capturing and processing system for use in a POS environment, comprising a system having a horizontal housing section, installable within a countertop surface at the POS environment, and supporting at least two area-type illumination and imaging stations for generating and projecting at least two area-type illumination and imaging zones within a 3D imaging volume definable relative to system housing. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates motion data representative of detected object motion within the 3D imaging volume. A control subsystem, responsive to the object motion detection subsystem, automatically controls operations within the area-type illumination and imaging stations during system operation. The area-type illumination and imaging zones intersect within the 3D imaging volume, and support automated illumination and imaging of objects passing through the 3D imaging volume, so that digital area-type images of the objects are automatically generated as the objects pass through the area-type illumination and imaging zones within the 3D imaging volume during system operation.
Abstract:
An automatic digital image capturing and processing system for use in a POS environment, comprising a system housing having vertical housing section provided with an imaging window, and containing an area-type illumination and imaging station for generating and projecting an area-type illumination and imaging zone through the imaging window, and into a 3D imaging volume definable relative to the imaging window. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates motion data representative of detected object motion within the 3D imaging volume. And a control subsystem, responsive to the object motion detection subsystem, automatically controls operations within the area-type illumination and imaging station during system operation. The area-type illumination and imaging zone supports automated illumination and imaging of objects passing therethrough, so that digital area-type images of the objects are automatically generated as objects pass through the area-type illumination and imaging zone within the 3D imaging volume during system operation.
Abstract:
An automatic code symbol reading system for use in point of sale (POS) environments, employing automatic object motion detection and illumination control, and digital video image capturing and processing techniques, which ensures the reliable reading of code symbols graphically represented in digital images, in high-throughput point-of-sale and other environments, while providing versatility required to accommodate the different ways in which human operators present objects for code symbol reading at POS environments.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises plurality of groups of intersecting laser scanning planes that form a complex omni-directional 3-D laser scanning pattern within a 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at the POS station.
Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. An object motion detection subsystem for automatically detecting the motion of an object passing through the 3D imaging volume, and generating motion data representative of the detected object motion. Each station includes an illumination subsystem having a linear illumination array including a plurality of light emitting devices for producing a substantially planar illumination beam (PLIB), and (ii) an image formation and detection subsystem including a linear image sensing array having optics providing a field of view (FOV) on the linear image detection array, and extending substantially along the PLIB. Each station produces at least one coplanar illumination and imaging plane (PLIB/FOV) which is projected through the imaging window and into the 3D imaging volume, for capturing linear (1D) digital images of objects moving through the 3D imaging volume. Each station also includes an automatic illumination control subsystem for controlling the production of illumination by the illumination subsystem into the 3D imaging volume, as an object is detected moving within the 3D imaging volume. Within each station, an image capturing and buffering subsystem captures and buffers linear digital images produced from the linear image detection array, and a local control subsystem controls operations within the coplanar illumination and imaging station using control data derived from motion data generated by the object motion detection subsystem.
Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging subsystem for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. The system further includes a global object motion detection subsystem for detecting the motion of objects moving through the 3D imaging volume, and a global control subsystem for controlling the state of operations within each coplanar illumination and imaging station during system operation. Each coplanar illumination and imaging subsystem has an object detection state and a code symbol reading state of operation, and includes an array of planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV) that is projected through the 3D imaging volume, for capturing linear (ID) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. When the global object motion detection subsystem automatically detects the motion of an object passing through at least a portion of the 3D imaging volume, the global control subsystem manages the state of operation of each coplanar illumination and imaging station, e.g. by driving ore or more of coplanar illumination and imaging subsystems into the code symbol reading state of operation.
Abstract:
A digital image capture and processing system employing automated real-time analysis of digital image exposure quality to automatically reconfigure system control parameters, and dynamically control illumination and imaging operations within the digital image capture and processing system.
Abstract:
An automatic digital-imaging based code symbol reading system supporting a presentation mode of system operation, automatic object direction detection and illumination control, and video image capture and processing techniques. By virtue of the present invention, the automatic digital-imaging based code symbol reading system ensures the reliable reading of code symbols graphically represented in digital images, in high-throughput point-of-sale and other environments.