Abstract:
A technique includes generating vibroseis sweeps for a vibroseis survey to produce seismic data acquired in response to seismic signals produced by the sweeps. The generation of the vibroseis sweeps including temporally arranging the sweeps into time-overlapping groups. The technique includes regulating a timing of the groups relative to each other based on a slip time. The technique also includes regulating a timing of the sweeps of each group such that consecutive sweep firings of each group are spaced apart by a time substantially less than the slip time.
Abstract:
A technique includes processing seismic data indicative of samples of at least one measured seismic signal in a processor-based machine to determine basis functions that represent a constructed seismic signal based at least in part on a matching pursuit-based technique. The technique further includes basing the determination of the basis functions at least in part on a predicted energy distribution of the constructed seismic signal.
Abstract:
A method of determining a search expression describing a feature of interest in a set of data points distributed throughout a geological object is provided. Each data point contains a value for a geological attribute at that point. The search expression has a plurality of entries. The method including the steps of: (i) displaying the geological object using display codings corresponding to value subranges for the geological attribute such that all data points which have values for the geological attribute falling within a given value subrange are displayed with the same coding; (ii) selecting a plurality of data points of the feature of interest; and (iii) allocating value characters to entries of the search expression, the value characters corresponding to the value subranges for the geological attribute of the selected data points.
Abstract:
A seismic streamer system for acquiring seismic data includes a plurality of first cable sections each employing a first sensor configuration therein, and at least one second cable section operatively connected to one or more of the first cable sections and employing a second sensor configuration therein. In various embodiments of the streamer system, one or more of the second cable sections are sparsely integrated into a streamer, a streamer array and/or a seismic spread. The first sensor configuration may, e.g., include a conventional hydrophone distribution, and the second sensor configuration may, e.g., include multicomponent sensors such as at least one of a particle velocity sensor, a pressure gradient sensor, an accelerometer and a combination thereof. The present invention is useful for attenuating noise in the measured seismic data as well as deghosting the data. A particular deghosting process includes decomposing the up- and down-going parts of the vertical component of particle velocity associated with the acoustic wave reflections from the strata.
Abstract:
A technique includes modeling interpolated seismic measurements as a random process characterized by seismic measurements acquired at a set of sensor locations and an interpolation error. The technique includes determining the interpolated seismic measurements based at least in part on a minimization of the interpolation error.
Abstract:
Methods and apparatuses for an inversion process in an imaging process, in which 3-D surface models are used to explicitly represent complex boundaries, in which the 3-D surface models and the gridded models are linked by projection and model gridding, and in which the 3-D surface models and the gridded models are updated during inversion.
Abstract:
Methods and computing systems for processing collected data are disclosed. In one embodiment, a method is provided for predicting a plurality of surface multiples for a plurality of target traces in a record of multi-component seismic data acquired in a survey area. The method may select a target trace. The method may select an aperture of potential downward reflection points for the target trace. The method may calculate dip propagation attributes from the multi-component seismic data. The method may map the dip propagation attributes into a multiple contribution attribute gather based on the aperture. The method may modify the aperture based on the multiple contribution attribute gather. The method may then predict multiples for the selected target trace using the modified aperture.
Abstract:
It is described a method of interpolating and extrapolating seismic recordings, including the steps of deriving particle velocity related data from seismic recordings obtained by at least one streamer carrying a plurality of multi-component receivers and using the particle velocity related data to replace higher derivatives of pressure data in an expansion series.
Abstract:
A technique includes receiving first data acquired by at least a particle motion gradient sensor or a rotation sensor of a streamer that is subject to vibration due to towing of the streamer; and receiving second data acquired by at least one particle motion sensor of the streamer and being indicative of particle motion and vibration noise. The technique includes processing the second data in a processor-based machine to, based at least in part on the first data, attenuate the vibration noise indicated by the second data to generate third data indicative of the particle motion.
Abstract:
A system and method for performing a seismic survey. The system includes a first seismic source and a second seismic source configured for generating seismic signals. The first seismic source is configured for generating seismic signals ranging from about 4 Hz to about 120 Hz. The second seismic source is configured for generating seismic signals ranging from about 0 Hz to about 8 Hz. The system includes receivers to receive seismic data in response to seismic signals generated by the seismic sources.