摘要:
A system and method for gamut mapping includes a luminance compression algorithm for gamut mapping that varies across different parts of the image. In shadow regions, a soft compression function is applied to bring out the detail. In other regions, including areas with high local contrast, a hard clipping function is applied to preserve local contrast. The algorithm adaptively blends between these two functions to ensure that the overall compression function is spatially smooth. The system and method may also use chrominance information to compute “perceived lightness”, to be used as input to the low-pass filter. Also, the blending function α( ) could be a function of chrominance as well as luminance.
摘要:
Provided herein are teachings directed to overcoming the problem of erroneous color reproduction on a color output device such as a color display. The teachings herein provide a method for correcting color image data input to a display device by displaying a target of color patches of known input values on the display device, and capturing an image of the target with a digital camera. This is followed by extracting camera signals from the image which corresponds to the color patches, and deriving a tone response calibration for the projector from the camera signals and the input values.
摘要:
Provided herein are teachings directed to overcoming the problem of erroneous color reproduction on a color output device such as a color display. The teachings herein provide a system and apparatus for correcting color image data input to a display device by displaying a target of color patches of known input values on the display device, and capturing an image of the target with a digital camera. This is followed by extracting camera signals from the image which correspond to the color patches, and deriving a tone response calibration for the projector from the camera signals and the input values.
摘要:
The appearance of a color print viewed under UV illumination is predicted using a target comprising color patches each printed using a known coverage of printer colorant(s). In one case, the target is illuminated using a UV light source and an electronic image of the target is captured using a digital camera or the like. In another case, a spectrophotometer is used both with and without a UV cutoff filter to measure the target. The captured image data or the spectrophotometric measurements are used to derive a UV printer characterization model that relates any arbitrary combination of printer colorants to a predicted UV color appearance value. Metameric colorant mixture pairs for visible light and UV light viewing can be determined using the UV model together with a conventional visible light printer characterization model. A visual matching task is used to determine a correction factor for the UV printer characterization model.
摘要:
What is provided herein is a method for automatically selecting a subset of pages from a multi-page document for image processing wherein each selected page is substantially different from all other pages according to certain features of interest and wherein the combined content of the selected pages approximately represents the content in the entire document. Selected pages are clustered wherein each page is represented by a feature vector meaningfully related to the task to be performed. A matrix of feature vectors is analyzed. Basis vectors are extracted from the matrix using rank-reduction techniques. Clustering is performed by subspace projection of page features onto the basis vectors with each page being assigned to a cluster to which that page maximally projects. Representative pages are selected from each cluster. The representative pages can then be used as input to a secondary process.
摘要:
Spatially dependent colorant interaction effects are identified and isolated from other aspects of spatially dependent colorant appearance nonuniformities. A decorrelating function for compensating for the identified spatially dependent colorant interaction effects is determined. Spatially dependent single colorant compensating functions for compensating for the other aspects of the spatially dependent colorant appearance nonuniformities may also be determined. Image data is processed through the decorrelating function, thereby generating colorant values that are compensated for spatially dependent colorant interaction effects. Optionally, image data is also processed through the spatially dependent single colorant compensating functions, thereby generating colorant values that are compensated for both aspects of colorant appearance nonuniformities. The two kinds of compensating functions may be determined, calibrated and/or stored at different spatial and temporal frequencies or resolutions. One or both of the compensating functions may be employed to maintain consistency across a plurality of rendering devices (e.g., marking engines).
摘要:
The teachings as provided herein relate to a watermark embedded in an image that has the property of being relatively indecipherable under normal light, and yet decipherable under UV light. This fluorescent mark comprises a substrate containing optical brightening agents, and a first dot design printed as an image upon the substrate. The first dot design has as a characteristic the property of strongly suppressing substrate fluorescence. A second dot design having a property of providing a differing level of substrate fluorescence suppression from that of the first dot design such that when rendered in close spatial proximity with the first dot design image print, the resultant image rendered substrate suitably exposed to an ultra-violet light source, will yield a discernable image evident as a fluorescent mark.
摘要:
The teachings as provided herein relate to a watermark embedded in an image that has the property of being relatively indecipherable under normal light, and yet decipherable under UV light. This fluorescent mark comprises a substrate containing optical brightening agents, and a first colorant mixture printed as an image upon the substrate. The colorant mixture layer has as characteristics a property of strongly suppressing substrate fluorescence, as well as a property of low contrast under normal illumination against the substrate or a second colorant mixture printed in close spatial proximity to the first colorant mixture, such that the resultant image rendered substrate suitably exposed to an ultra-violet light source, will yield a discernable image evident as a fluorescent mark.
摘要:
What is disclosed is a decoding method for retrieving information bits encoded in a printed image comprising the steps of first receiving an input electronic image as a scanned version of the printed image. A region of interest in the image is then extracted and, for that region, an amount of K colorant present, denoted KH; is obtained. Further, a color value is generated therefrom and the GCR used for encoding that region is determined using KH and the obtained color value. Encoded information bits are retrieved therefrom based on the determined GCR. The estimated KH is preferably evaluated conditional to a capacity signal KL and a luminance signal L. From the obtained data, values of KH, KL, and L, are derived wherein KH is estimated from a high resolution scan, and KL and L are estimated from a down-scaled image, respectively. The capacity signal KL and the luminance signal L are derived from the obtained color value. Further, the capacity signal, KL is derived by first applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution and then converting the obtained color values to CMY estimates such that KL=min(C,M,Y) Alternatively, K-capacity is derived from the amount, KL, y, comprises first converting the obtained color values to CMY estimates and applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution such that KL=min(S(C),S(M),S(Y)); wherein L is described by a linear combination of scan signals RGB, such that L=k1S(R)+k2S(G)+k3S(B). The value of KH is determined by first converting the obtained color values to CMY estimates. The estimates determine K-colorant amount at each pixel such that: K=min(C,M,Y). A suitable operator S is applied to reduce the image from scanner resolution to the watermark resolution.
摘要:
Aspects of color of a halftoned image are controlled or adjusted. A method for adjustment can include determining a color description of a color of an area or window associated with a target halftoned pixel, determining a desired adjustment to the color associated with the target pixel, determining a color change value based on the desired adjustment and the color description associated with the target pixel, combining the color change value with at least one value of the target halftoned pixel, thereby generating at least one combined target pixel value and quantizing the at least one combined target pixel value. For instance error diffusion and/or rank-ordered error diffusion is used to perform the quantization. Color adjustments can be based on user preference and/or calibration compensations between original and target devices.