摘要:
A dynamic projected user interface device is disclosed, that includes a projector, a projection controller, and an imaging sensor. The projection controller is configured to receive instructions from a computing device, and to provide display images via the projector onto display surfaces. The display images are indicative of a first set of input controls when the computing device is in a first operating context, and a second set of input controls when the computing device is in a second operating context. The imaging sensor is configured to optically detect physical contacts with the one or more display surfaces.
摘要:
The subject disclosure is directed towards detecting symbolic activity within a given environment using a context-dependent grammar. In response to receiving sets of input data corresponding to one or more input modalities, a context-aware interactive system processes a model associated with interpreting the symbolic activity using context data for the given environment. Based on the model, related sets of input data are determined. The context-aware interactive system uses the input data to interpret user intent with respect to the input and thereby, identify one or more commands for a target output mechanism.
摘要:
A mobile device connection system is provided. The system includes an input medium to detect a device position or location. An analysis component determines a device type and establishes a connection with the device. The input medium can include vision systems to detect device presence and location where connections are established via wireless technologies.
摘要:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.
摘要:
Virtual controllers for visual displays are described. In one implementation, a camera captures an image of hands against a background. The image is segmented into hand areas and background areas. Various hand and finger gestures isolate parts of the background into independent areas, which are then assigned control parameters for manipulating the visual display. Multiple control parameters can be associated with attributes of multiple independent areas formed by two hands, for advanced control including simultaneous functions of clicking, selecting, executing, horizontal movement, vertical movement, scrolling, dragging, rotational movement, zooming, maximizing, minimizing, executing file functions, and executing menu choices.
摘要:
A dynamic projected user interface device is disclosed, that includes a projector, a projection controller, and an imaging sensor. The projection controller is configured to receive instructions from a computing device, and to provide display images via the projector onto display surfaces. The display images are indicative of a first set of input controls when the computing device is in a first operating context, and a second set of input controls when the computing device is in a second operating context. The imaging sensor is configured to optically detect physical contacts with the one or more display surfaces.
摘要:
A 3-D imaging system for recognition and interpretation of gestures to control a computer. The system includes a 3-D imaging system that performs gesture recognition and interpretation based on a previous mapping of a plurality of hand poses and orientations to user commands for a given user. When the user is identified to the system, the imaging system images gestures presented by the user, performs a lookup for the user command associated with the captured image(s), and executes the user command(s) to effect control of the computer, programs, and connected devices.
摘要:
The claimed subject matter provides a system and/or a method that facilitates detecting and identifying objects within surface computing. An interface component can receive at least one surface input, the surface input relates to at least one of an object, a gesture, or a user. A surface detection component can detect a location of the surface input utilizing a computer vision-based sensing technique. A Radio Frequency Identification (RFID) tag can transmit a portion of RFID data, wherein the RFID tag is associated with the surface input. A Radio Frequency Identification (RFID) fusion component can utilize the portion of RFID data to identify at least one of a source of the surface input or a portion of data to associate to the surface input.
摘要:
In an interactive display system, a projected image on a display surface and a vision system used to detect objects touching the display surface are aligned, and optical distortion of the vision system is compensated. Also, calibration procedures correct for a non-uniformity of infrared (IR) illumination of the display surface by IR light sources and establish a touch threshold for one or more uses so that the interactive display system correctly responds to each user touching the display surface. A movable IR camera filter enables automation of the alignment of the projected image and the image of the display surface and help in detecting problems in either the projector or vision system.
摘要:
An interactive table has a display surface on which a physical object is disposed. A camera within the interactive table responds to infrared (IR) light reflected from the physical object enabling a location of the physical object on the display surface to be determined, so that the physical object appear part of a virtual environment displayed thereon. The physical object can be passive or active. An active object performs an active function, e.g., it can be self-propelled to move about on the display surface, or emit light or sound, or vibrate. The active object can be controlled by a user or the processor. The interactive table can project an image through a physical object on the display surface so the image appears part of the object. A virtual entity is preferably displayed at a position (and a size) to avoid visually interference with any physical object on the display surface.