摘要:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.
摘要:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.
摘要:
The recognition of user input to a computing device is enhanced. The user input is either speech, or handwriting data input by the user making screen-contacting gestures, or a combination of one or more prescribed words that are spoken by the user and one or more prescribed screen-contacting gestures that are made by the user, or a combination of one or more prescribed words that are spoken by the user and one or more prescribed non-screen-contacting gestures that are made by the user.
摘要:
A “Contact Discriminator” provides various techniques for differentiating between valid and invalid contacts received from any input methodology by one or more touch-sensitive surfaces of a touch-sensitive computing device. Examples of contacts include single, sequential, concurrent, or simultaneous user finger touches (including gesture type touches), pen or stylus touches or inputs, hover-type inputs, or any combination thereof. The Contact Discriminator then acts on valid contacts (i.e., contacts intended as inputs) while rejecting or ignoring invalid contacts or inputs. Advantageously, the Contact Discriminator is further capable of disabling or ignoring regions of input surfaces, such tablet touch screens, that are expected to receive unintentional contacts, or intentional contacts not intended as inputs, for device or application control purposes. Examples of contacts not intended as inputs include, but are not limited to, a user's palm resting on a touch screen while the user writes on that screen with a stylus or pen.
摘要:
The recognition of user input to a computing device is enhanced. The user input is either speech, or handwriting data input by the user making screen-contacting gestures, or a combination of one or more prescribed words that are spoken by the user and one or more prescribed screen-contacting gestures that are made by the user, or a combination of one or more prescribed words that are spoken by the user and one or more prescribed non-screen-contacting gestures that are made by the user.
摘要:
A “Contact Discriminator” provides various techniques for differentiating between valid and invalid contacts received from any input methodology by one or more touch-sensitive surfaces of a touch-sensitive computing device. Examples of contacts include single, sequential, concurrent, or simultaneous user finger touches (including gesture type touches), pen or stylus touches or inputs, hover-type inputs, or any combination thereof. The Contact Discriminator then acts on valid contacts (i.e., contacts intended as inputs) while rejecting or ignoring invalid contacts or inputs. Advantageously, the Contact Discriminator is further capable of disabling or ignoring regions of input surfaces, such tablet touch screens, that are expected to receive unintentional contacts, or intentional contacts not intended as inputs, for device or application control purposes. Examples of contacts not intended as inputs include, but are not limited to, a user's palm resting on a touch screen while the user writes on that screen with a stylus or pen.
摘要:
Described is using a combination of which a multi-view display is provided by a combining spatial multiplexing (e.g., using a parallax barrier or lenslet), and temporal multiplexing (e.g., using a directed backlight). A scheduling algorithm generates different views by determining which light sources are illuminated at a particular time. Via the temporal multiplexing, different views may be in the same spatial viewing angle (spatial zone). Two of the views may correspond to two eyes of a person, with different video data sent to each eye to provide an autostereoscopic display for that person. Eye (head) tracking may be used to move the view or views with a person as that person moves.
摘要:
The subject application relates to a system(s) and/or methodology that facilitate vision-based projection of any image (still or moving) onto any surface. In particular, a front-projected computer vision-based interactive surface system is provided which uses a new commercially available projection technology to obtain a compact, self-contained form factor. The subject configuration addresses installation, calibration, and portability issues that are primary concerns in most vision-based table systems.
摘要:
A system that facilitates enhancing a game, game play or playability of a game may include an experience component, a game component and an alteration component. The experience component can collect a portion of data related to a game in which the portion of data indicates at least one of a tip or a tactic for the game. The game component can dynamically incorporate the portion of data into the game during game play to enhance playability of such game for a user with assistance provided by at least one of the tip or the tactic. The alteration component may alter the game during game play.
摘要:
The claimed subject matter provides a system and/or a method that facilitates enhancing a game, game play or playability of a game. An experience component can collect a portion of data related to a game in which the portion of data indicates at least one of a tip or a tactic for the game. A game component can dynamically incorporate the portion of data into the game during game play to enhance playability of such game for a user with assistance provided by at least one of the tip or the tactic.