Abstract:
Overlapping multiple fiber Bragg gratings for reflecting light in a plurality of wavelength each with a selected narrow linewidth are described. Each fiber Bragg grating has a selected period so as to reflect light in a wavelength with a selected narrow linewidth. The overlapping multiple fiber Bragg gratings can be used in various applications, including a multiwavelength laser source. One embodiment of a multiwavelength laser source includes a laser diode having first and second facets from which output light is emitted and an optical fiber section having an end located near the second facet to receive output light from the laser diode. The optical fiber section includes overlapping multiple fiber Bragg gratings for reflecting output light in the wavelengths with selected narrow linewidths back into the laser diode through its second facet. The output light emitted from the first facet has very narrow linewidths about the selected linewidths.
Abstract:
The present invention provides for a fiber optic coupler of first and second optic fibers formed by a length of the two fibers. The first optic fiber along the length has a different core diameter than that of the second optic fiber. At the both ends of the length the first and second optic fibers are twisted about each other with a central portion in which said first and second optic fibers are fused substantially parallel to each other. The resulting coupler is such that an input light signal is split into output light signals in a predetermined power ratio on the two optic fibers with the coupled power ratio relatively insensitive for a predetermined range of signal wavelengths.
Abstract:
A laser source with an extremely stable output is provided. A laser diode has an output intensity centered at a peak wavelength which is responsive to a control signal. First and second fiber Bragg gratings are coupled to the laser diode. The first fiber Bragg grating having a reflectivity centered about a first wavelength and the second fiber Bragg grating having a reflectivity centered about a second wavelength different from the first wavelength. Each of the first and second fiber Bragg gratings generates a feedback signal responsive to the reflectivity of the fiber Bragg grating and the output intensity of the laser diode. A controller connected to the laser diode generates the control signal responsive to the feedback signals from the first and second fiber Bragg gratings so that the peak wavelength of the laser diode is maintained at a fixed wavelength between the first and second wavelengths.
Abstract:
The present invention provides fiber optic couplers for use with at least three optic fibers. The optic fibers arranged in a linear array, that is, the optic fibers are coupled side by side. The fibers along either end of the linear-array are coupled only to a single fiber, while the remaining fibers are generally coupled between only two adjacent fibers. Generally, at least one of the fibers has a propagation constant different that the other fibers. Such variations in the propagation constant are used to vary the coupling coefficients among the fibers of the linear-array, thereby providing a repeatable mechanism, to vary coupled power ratios among the fibers of the coupler. Theoretical calculations and empirical experience have shown that varying the propagation constant of fibers among a linear-array, generally by pre-pulling the fibers by varying amounts, allows repeatable manufacturing of 1.times.3, 1.times.4, 4.thrfore.3, 1.times.N and even N.times.N fiber couplers having even coupled power ratios.
Abstract:
A fiberoptic coupler capable of many functions is presented. The basic fiberoptic coupler has a first sleeve, a second sleeve, a first collimating GRIN or conventional lens, and a second collimating GRIN or conventional lens. The first sleeve holds end sections of two or more input optical fibers along the longitudinal axis of the sleeve. The second sleeve holds an end section of at least one output optical fiber. The end face of the second sleeve faces the first sleeve end face. The first collimating GRIN or conventional lens in front of the first sleeve end face collimates light signals from the input optical fibers and the second collimating GRIN or conventional lens in front of the second sleeve end face focusses light signals from at least one of the input optical fibers into the single output fiber, or at least one of the output optical fibers. With only one output fiber the coupler operates as a combiner. If more than one output fiber is held by the second sleeve, the input and output fibers can be arranged so that a light signal from one input fiber is sent to one output fiber. For added functionality, optical elements, such as isolators and wavelength-dependent filters, ca be inserted between the first and second collimating lenses.
Abstract:
Optical filters, filter systems, and methods for filtering optical signals transmitted along optical fibers provide enhanced filter performance by combining the capabilities of different types of filters particularly for dense wavelength division multiplexed systems. More specifically, the spectral skirt or transition wavelength range between a pass band wavelength range and a blocked wavelength range of a thin film pass band or dichroic filter is enhanced by arranging the thin film filter in series with one or more Fiber Bragg Gratings. The Fiber Bragg Gratings will generally reflect a portion of the signal within the spectral skirt or transition wavelength range of the thin film filter. Although short Fiber Bragg Gratings generally block a quite narrow range of signals, the steep spectral skirt of the grating, when combined with the broader wavelength response of a thin film bandpass or dichroic filter, results in a composite filter structure which exhibits the beneficial characteristics of each of its components.
Abstract:
Optic switches manipulate an optical signal that has been expanded by a collimating lens. Switching is effected by introducing a prism between collimating lenses to redirect the optical signal to an alternative lens. The prism preferably has a cross-section defining a parallelogram, so that the optical signal is reflected twice within the prism to minimize cross-sectional distortion and avoid spectral effects. A circuit provides feedback on the actual position of the relay and prism for fault detection and diagnosis.
Abstract:
Multiplexer and demultiplexer devices for Dense WDM networks are described. The devices use an optical circulator, a plurality of bandpass wavelength division units and fiber Bragg gratings arranged in the optical fibers interconnecting the optical circulator and the bandpass wavelength division units. The optical circulator is connected to a network optical fiber and the bandpass wavelength division units are connected to a plurality of input/output optical fibers. Each fiber Bragg grating has a narrow wavelength reflection band about a predetermined wavelength and is arranged so that optical signals at wavelengths differing from predetermined wavelengths of the first optical fibers connected to a bandpass wavelength division unit are blocked and reflected. Depending upon the direction of the optical circulator, the device may be a multiplexer or a demultiplexer. Alternatively, a 3dB optical coupler may be used in place of the optical circulator with a corresponding rearrangement of the fiber Bragg gratings.
Abstract:
The present invention provides for a reduced isolator assembly having only two elements for a linearly polarized light source. The first element may be a birefringent crystal or a linear polarizer, such as a linear polarizer sheet, a laminated thin-film polarizer, or a polarizing beam splitter. The second element is a quarter-wave plate. The isolator blocks the light reflected back toward the polarized light source.
Abstract:
A fiberoptic coupler capable of many functions is presented. The basic fiberoptic coupler has a first sleeve, a second sleeve, a first collimating GRIN or conventional lens, and a second collimating GRIN or conventional lens. The first sleeve holds end sections of two or more input optical fibers along the longitudinal axis of the sleeve. The second sleeve holds an end section of at least one output optical fiber. The end face of the second sleeve faces the first sleeve end face. The first collimating GRIN or conventional lens in front of the first sleeve end face collimates light signals from the input optical fibers and the second collimating GRIN or conventional lens in front of the second sleeve end face focusses light signals from at least one of the input optical fibers into the single output fiber, or at least one of the output optical fibers. With only one output fiber the coupler operates as a combiner. If more than one output fiber is held by the second sleeve, the input and output fibers can be arranged so that a light signal from one input fiber is sent to one output fiber. For added functionality, optical elements, such as isolators and wavelength-dependent filters, can be inserted between the first and second collimating lenses.