摘要:
A manufacturing method for a high-temperature-resistant metal-packaged fiber Bragg grating sensor includes using a regenerated fiber Bragg grating obtained via high-temperature annealing as a sensitive element so that the grating will not be erased when used at high temperature. The method also includes using a magnetron sputtering method which makes an optical fiber and metal combine better to form on the surface of the optical fiber an adhesive layer and a conductive layer, thereby causing little damage to optical fiber because of the absence of the processes of coarsening, sensitization, etc. of electroless plating and the fact that the method is performed in an anhydrous environment. After magnetron sputtering, the method includes using an electroplating method to thicken and deposit a protective layer, and embedding the optical fiber in a flexible-structure metallic substrate through the electroplating method to achieve the all-metal package.
摘要:
The present invention provides a packaging for a fiber optic component, such as an optical fiber, wherein the heating induced strain to the fiber optic component is minimized, wherein the packaging comprises a first support member having a first coefficient of thermal expansion (k1). The packaging further comprises a second support member, which is resiliently mounted to the first support member for minimizing transfer of thermal expansion induced strain of the first support member to the second support member. The second support member comprises a longitudinal groove open at least on one side of the second support member for receiving a fiber optic component, wherein the second support member has a tensile strength considerably higher than that of the fiber optic component. The second support member has a second coefficient of thermal expansion (k2) substantially smaller than the first coefficient of thermal expansion (k1), wherein the first support member is adapted to exchange heat induced by free-space radiation. The second support member is made of material, such as quartz, which is transparent to the wavelengths used in the component.
摘要:
An optical fiber connector embedded with a Bragg grating includes: a ferrule formed with a reception unit for inserting and fixing a temperature compensation connection port from one end, a space unit extended from the reception unit toward inside, and an optical fiber insertion hole penetrating a side surface of the other end along a center of an axial direction from an inclined surface gradually narrowed toward inside of the space unit; the temperature compensation connection port formed with a connection unit contacting with the reception unit of the ferrule, an optical fiber support unit having an outer diameter smaller than an inner diameter of the space unit of the ferrule from the connection unit and protruding to be spaced apart from an inlet of the ferrule by a predetermined distance to form a space for accommodating the Bragg grating and support an optical fiber, and the optical fiber insertion hole penetrating both ends along the center of the axial direction to insert the optical fiber; an optical fiber cable having the optical fiber inserted into the optical fiber insertion hole of the temperature compensation connection port and the optical fiber insertion hole of the ferrule and the Bragg grating placed in the space unit of the ferrule; and a socket, one end of which is fixed to the ferrule, and the other end of which is fixed to an optical fiber cladding of the optical fiber cable.
摘要:
A package for an arcuate planar lightwave circuit (PLC) chip includes a heater plate coupled to a base by a thick and soft support layer. The arcuate PLC is attached to the heater plate by soft adhesive. A hard adhesive is applied to a multi-waveguide end of the arcuate PLC, to additionally strengthen the attachment of the arcuate PLC to the heater plate. The structure allows the mechanical stress due to fiber pull/shock/vibration to be dissipated in the support layer without introducing large wavelength shifts in the arcuate PLC. The support layer also serves as a heat insulator, facilitating uniform heating of the arcuate PLC.
摘要:
A post-assembly wavelength-tuning method for an optical filter provided along an optical fiber mounted under tension in a packaging assembly is provided. The packaging assembly includes at least one packaging component mechanically coupled to the optical fiber and optically accessible from outside of the packaging assembly. The method includes a step of measuring a post-assembly spectral response of the optical filter and determining therefrom a spectral deviation with respect to a target spectral response. The method also includes a step of forming one or more laser-welded zones on the packaging component so as to cause a permanent deformation thereof. The permanent deformation induces a modification in length of the optical fiber, thereby changing the post-assembly spectral response of the optical filter to compensate for the measured spectral deviation.
摘要:
A manufacturing method for a high-temperature-resistant metal-packaged fiber Bragg grating sensor includes using a regenerated fiber Bragg grating obtained via high-temperature annealing as a sensitive element so that the grating will not be erased when used at high temperature. The method also includes using a magnetron sputtering method which makes an optical fiber and metal combine better to form on the surface of the optical fiber an adhesive layer and a conductive layer, thereby causing little damage to optical fiber because of the absence of the processes of coarsening, sensitization, etc. of electroless plating and the fact that the method is performed in an anhydrous environment. After magnetron sputtering, the method includes using an electroplating method to thicken and deposit a protective layer, and embedding the optical fiber in a flexible-structure metallic substrate through the electroplating method to achieve the all-metal package.
摘要:
A package for an arcuate planar lightwave circuit (PLC) chip includes a heater plate coupled to a base by a thick and soft support layer. The arcuate PLC is attached to the heater plate by soft adhesive. A hard adhesive is applied to a multi-waveguide end of the arcuate PLC, to additionally strengthen the attachment of the arcuate PLC to the heater plate. The structure allows the mechanical stress due to fiber pull/shock/vibration to be dissipated in the support layer without introducing large wavelength shifts in the arcuate PLC. The support layer also serves as a heat insulator, facilitating uniform heating of the arcuate PLC.
摘要:
An optical fiber connector embedded with a Bragg grating includes: a ferrule formed with a reception unit for inserting and fixing a temperature compensation connection port from one end, a space unit extended from the reception unit toward inside, and an optical fiber insertion hole penetrating a side surface of the other end along a center of an axial direction from an inclined surface gradually narrowed toward inside of the space unit; the temperature compensation connection port formed with a connection unit contacting with the reception unit of the ferrule, an optical fiber support unit having an outer diameter smaller than an inner diameter of the space unit of the ferrule from the connection unit and protruding to be spaced apart from an inlet of the ferrule by a predetermined distance to form a space for accommodating the Bragg grating and support an optical fiber, and the optical fiber insertion hole penetrating both ends along the center of the axial direction to insert the optical fiber; an optical fiber cable having the optical fiber inserted into the optical fiber insertion hole of the temperature compensation connection port and the optical fiber insertion hole of the ferrule and the Bragg grating placed in the space unit of the ferrule; and a socket, one end of which is fixed to the ferrule, and the other end of which is fixed to an optical fiber cladding of the optical fiber cable.
摘要:
Provided is an athermal external cavity laser (ECL), whose output optical power and output wavelength can be kept regular irrespective of temperature changes without using additional temperature controlling components. The ECL comprises: a semiconductor amplifier; an optical fiber comprising a core in which a Bragg grating is formed and a cladding surrounding the core; and a thermosetting polymer that fixes the optical fiber to a ferrule and has a negative thermooptical coefficient, wherein the thickness of the cladding surrounding the core in which the Bragg grating is formed is smaller than the portion of the cladding surrounding the portion of the core where the Bragg grating is not formed, and the thermosetting polymer the negative thermooptical coefficient surrounds the cladding. The ECL does not need additional temperature controlling components and thus can be manufactured compact and at low cost, and thus can be used as a light source of a dense wavelength division multiplexing (DWDM) system in designing economical WDM passive optical networks (PON).
摘要:
A sensing system including a sensor having an enclosure that defines a chamber, a fiber optic segment extending from outside the enclosure into the chamber, and a sequence of optical processing elements within the chamber. The elements include a fiber Bragg grating, a polarizer, a side hole fiber, and a mirror. A light source is arranged to direct light to the sensor(s). A spectral analyzer is arranged to detect light reflected back from the sensor(s). The fiber Bragg grating substantially reflects a first spectral envelope while transmitting the remainder of the optical spectrum to the polarizer and side hole fiber. The polarizer, side hole fiber, and mirror cooperate to return an optical signal within a second spectral envelope. The characteristic wavelength of a peak in the first spectral envelope is highly sensitive to temperature and relatively weakly sensitive to pressure. The period of the optical signal within the second spectral envelope is highly sensitive to pressure and relatively weakly sensitive to temperature. The spectral analyzer measures these spectral components to simultaneously derive a measure of temperature and pressure that effectively compensates for temperature-pressure cross-sensitivity of the sensor(s).