摘要:
The present invention provides a heat mode recording material comprising on a support having a hydrophilic surface or being provided with a hydrophilic layer, a metallic layer and on top thereof a hydrophobic layer having a thickness of less than 50 nm and there is further provided a method for making a lithographic plate therewith.
摘要:
A method of making a lithographic printing plate includes the steps of: providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which includes hydrophobic thermoplastic polymer particles; exposing the coating to heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; and developing the precursor by applying a gum solution to the coating, thereby removing non-exposed areas of the coating from the support. According to the above method, the plate precursor can be developed and gummed in a single step.
摘要:
A method for making a lithographic printing plate is disclosed which comprises the steps of: (i) providing a negative-working, heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating comprising an image-recording layer which comprises hydrophobic thermoplastic polymer particles and a hydrophilic binder, wherein the hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm, and wherein the amount of the hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the image-recording layer; (ii) exposing the coating to heat or infrared light, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (iii) developing the precursor by applying an aqueous alkaline solution, thereby removing non-exposed areas of the coating from the support, wherein the aqueous alkaline solution has a pH ≧10 and comprises a surfactant.
摘要:
A heat-sensitive negative-working lithographic printing plate precursor includes on a grained and anodized aluminum support a coating including hydrophobic thermoplastic polymer particles, a hydrophilic binder, and an organic compound, wherein the organic compound includes at least one phosphonic acid group or at least one phosphoric acid group or a salt thereof.
摘要:
A method for making a lithographic printing plate is disclosed which comprises the steps of: (i) providing a negative-working, heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating comprising an image-recording layer which comprises hydrophobic thermoplastic polymer particles and a hydrophilic binder, wherein the hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm and wherein the amount of the hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the image-recording layer; (ii) exposing the coating to heat or infrared light, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (iii) developing the precursor by applying an aqueous, alkaline solution, thereby removing non-exposed areas of the coating from the support, wherein the aqueous alkaline solution has a pH≧11 and comprises a phosphate buffer or a silicate buffer.
摘要:
A method is disclosed wherein a positive-working heat-sensitive lithographic printing plate precursor is prepared comprising the steps of: (i) providing a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) coating a first solution comprising a first polymer, said first polymer being soluble in an alkaline solution, (iii) coating a second solution comprising a heat-sensitive positive-working imaging composition, and (iv) coating a third solution comprising a third polymer or surfactant wherein said third polymer or said surfactant reduce the penetrability of an alkaline developer solution into the coating. The printing plates obtained by this method exhibits a reduced dot-loss, resulting in an improved developing latitude.
摘要:
A method for making a heat-sensitive negative-working lithographic printing plate precursor is disclosed comprising the steps of (i) preparing a coating solution comprising hydrophobic thermoplastic polymer particles and a hydrophilic binder; (ii) applying said coating solution on a support having a hydrophilic surface or which is provided with a hydrophilic layer, thereby obtaining an image-recording layer; (iii) drying said image-recording layer; characterized in that said hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm, and that the amount of said hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the dried image-recording layer.
摘要:
A method for making a lithographic printing plate is disclosed which comprises the steps of: (i) providing a negative-working, heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating comprising an image-recording layer which comprises hydrophobic thermoplastic polymer particles and a hydrophilic binder, wherein the hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm, and wherein the amount of the hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the image-recording layer; (ii) exposing the coating to heat or infrared light, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (iii) developing the precursor by applying an aqueous alkaline solution, thereby removing non-exposed areas of the coating from the support, wherein the aqueous alkaline solution has a pH≧10 and comprises a surfactant.
摘要:
A printing system making use of a lithographic printing plate has been disclosed, the system comprising the steps of image-wise exposing to infrared light a heat sensitive imaging element, the element being optionally present on the printing press before starting the image-wise exposing step to infrared light, wherein the element comprises, on a lithographic base with a hydrophilic surface thereupon, an image-forming layer including hydrophobic thermoplastic polymer particles and a hydrophilic polymer binder, and, optionally, an infrared absorbing compound, wherein the hydrophobic polymer particles contain more than 0.1 wt % of nitrogen and have an average particle size diameter in the range from 0.015 to 0.150 &mgr;m; developing the image-wise exposed imaging element by mounting it on a print cylinder of a printing press and applying an aqueous dampening liquid ink to the imaging element while rotating the print cylinder; providing a printing run length of the press, increased with a factor of at least 5, when reducing the average particle size diameter of the hydrophobic polymer particles in an amount of more than 25%.
摘要:
A method of lithographic printing is disclosed which comprises the steps of unwinding a web of a flexible lithographic base from a supply spool, the lithographic base having a hydrophilic surface, wrapping the lithographic base around a cylinder of a printing press, applying on the lithographic base an image-recording layer which is removable in a single-fluid ink or can be rendered removable in a single-fluid ink by exposure to heat or light, image-wise exposing the image-recording layer to heat or light, processing the image-recording layer by supplying single-fluid ink, thereby obtaining a printing master, printing by supplying single-fluid ink to the printing master which is mounted on a plate cylinder of the printing press; and removing the printing master from the plate cylinder, preferably by winding up on an uptake spool. Since the image-recording layer can be processed by single-fluid ink, the imaging material is suitable for on-press processing in printing presses wherein no fountain solution is supplied to the plate. The method allows a rapid, fully automatic plate change with reduced press down time.