Abstract:
A smectic liquid crystal material which comprises (1) an antiferroelectric liquid crystal material and/or a liquid crystal material ferroelectric phase and (2) a liquid crystal material having a smectic C phase. The smectic liquid crystal material may be used in a liquid crystal optical element having a spontaneous polarization of 0.06 nC/cm2 to 96 nC/cm2. The smectic material has a low spontaneous polarization value and the curve of light transmittance to applied voltage for the smectic material has a V-shaped characteristic.
Abstract translation:一种近晶型液晶材料,其包括(1)反铁电液晶材料和/或液晶材料铁电相,和(2)具有近晶C相的液晶材料。 近晶体液晶材料可以用于自发极化为0.06nC / cm 2〜96nC / cm 2的液晶光学元件。 近晶体材料具有低自发极化值,对于近晶材料的透射率对施加电压的曲线具有V形特征。
Abstract:
A first optical compensation plate consists of M (M being an integer equal to or greater than 2) optical compensation layers. A second optical compensation plate consists of N (N being an integer equal to or greater than 2) optical compensation layers. A liquid crystal display panel has (M+N) liquid crystal layers. The liquid crystal layers are made of materials having optically different polarities from those of the first and second optical compensation plates. Further, the direction of the optic axis of a j-th (j=1, 2, . . . , M) optical compensation layer from a first surface of the first optical compensation plate is substantially parallel to the direction of the optic axis of an (M-j+l)-th liquid crystal layer from the first optical compensation plate of the liquid crystal display panel at the time of voltage application, and the direction of the optic axis of an i-th (i=1, 2, . . . , N) optical compensation layer from a third surface of the second optical compensation plate is substantially parallel to the direction of the optic axis of an (M+N-i+l)-th liquid crystal layer from the first optical compensation plate of the liquid crystal display panel at the time of voltage application.
Abstract:
In a liquid crystal display apparatus comprising a twisted nematic liquid crystal sandwiched between a first substrate having a common electrode and a second substrate having a plurality of pixel electrodes, the twisted nematic liquid crystal having a splay distortion when no voltage is applied, a scan line is inserted between a pixel electrode and a signal electrode.
Abstract:
A liquid crystal display panel confines liquid crystal between a first orientation film over pixel electrodes and a second orientation film over a common electrode, and differently oriented areas of the first orientation film form boundaries extending over the pixel electrodes and between the pixel electrodes and gate/drain bus lines so as to align electric lines of force in the electric field with directions of liquid crystal molecules on both sides of each boundary, thereby stably controlling a disclination line at a predetermined position outside of open areas over the pixel electrodes.
Abstract:
A first polarizer and a second polarizer are located in an opposing relationship to each other on the optical axis of incident light with their polarization directions displaced from each other by a predetermined angle. A liquid crystal cell is arranged between the first polarizer and the second polarizer for rotation around the optical axis of the incident light. The incident light is introduced into the first polarizer while the liquid crystal cell is rotated. Transmission light, which is the incident light that has been transmitted successively through the first polarizer, the liquid crystal cell, and the second polarizer, is received by a photo-detector. The ratio between a variable component and a fixed component of the intensity of the transmission light is calculated. The cell gap of the liquid crystal cell is determined from the calculated ratio.
Abstract:
A planar light source, Fresnel lens sheet, and louver are disposed in the stated order in a light source apparatus. The Fresnel lens sheet deflects and focuses in one dimension light that has entered from the planar light source. The louver is disposed in the optical path of the light emitted from the Fresnel lens sheet, and the directivity of the light can be increased by restricting the traveling direction of the light to the focal direction of the Fresnel lens sheet. The light utilization ratio can thereby be increased, the directivity of planarly emitted light can be increased, and the brightness can be made uniform at the point of observation.
Abstract:
To suppress light leakage at the time of dark state, and to provide a liquid crystal display device whose electrodes in the reflection areas can be formed with high precision. The liquid crystal display device has a reflection area within a pixel unit by corresponding at least to a reflection plate forming part, and the reflection area is driven with a lateral electric field mode and normally-white. A driving electrode for forming an electric field to a liquid crystal layer of the reflection area is formed on the reflection plate via an insulating film by using a non-transparent electric conductor.
Abstract:
A display device is provided including an optical waveguide, and a light source, and also a louver, a transparent/scattering state switching element, and a transmissive liquid crystal display panel, provided in order on the side of a light-emitting surface of the optical waveguide. The transparent/scattering state switching element switches between a state for scattering the incident light and a state for transmitting the light without scattering. The light source drive circuit causes the transparent/scattering state switching element to transfer from the transparent state to the scattering state, and when the viewing angle range of the display is switched from narrow to wide, the intensity of the light source is gradually increased in conjunction with the transition state of the transparent/scattering state switching element.
Abstract:
A liquid crystal display device with a touch panel has a reflective display region and a transmissive display region, at least the transmissive display region including a liquid crystal layer energizable according to a lateral electric field mode. The liquid crystal display device includes a liquid crystal layer held between a pair of substrate disposed in confronting relation to each other, observer-side circular polarizer 9 disposed outwardly of one of the substrates, back-side circular polarizer 8 disposed outwardly of the other substrate, observer-side compensator 11 for reducing refractive index anisotropy of the liquid crystal layer in the reflective display region and the liquid crystal layer in the transmissive display region, and touch panel 13 disposed between observer-side circular polarizer 9 and observer-side compensator 11.
Abstract:
A liquid crystal display includes a liquid crystal panel in the pixel electrode and common electrodes formed within a pixel comprise repeating structures. The angular range of light incident from the light source is narrower along a direction of the repeating structures than along an orthogonal direction.